Suppr超能文献

Synthetic S-2 and H-5 segments of the Shaker K+ channel: secondary structure, membrane interaction, and assembly within phospholipid membranes.

作者信息

Peled H, Shai Y

机构信息

Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel.

出版信息

Biochemistry. 1994 Jun 14;33(23):7211-9. doi: 10.1021/bi00189a025.

Abstract

Current models of voltage-activated K+ channels predict that the channels are formed by the coassembly of four polypeptide monomers, each of which consists of six transmembrane segments (S1-S6) and long terminal domains. The aqueous pores are thought to be composed of the conserved H-5 regions contributed by four monomers. In this study, two putative membrane-embedded segments of the Shaker K+ channel were synthesized. One segment corresponds to the putative, transmembrane helix S-2 (amino acids 275-300), and the other corresponds to the highly conserved 12 amino acid residues within the H-5 region [amino acids 432-443, designated (12)H-5]. Structural and functional characterization at elevated lipid/peptide molar ratios (> 3000:1) was performed on the two segments, as well as on a previously synthesized 21 amino acid long peptide with a sequence resembling the entire H-5 region (designated (21)H-5) (Peled & Shai, 1993). Circular dichroism spectroscopy revealed that S-2 adopts predominantly alpha-helical structure in both trifluoroethanol and 35 mM SDS (78% or 99%, respectively), while (12)H-5 and (21)H-5 adopt low alpha-helical structure only in the presence of 35 mM SDS. Functional characterization demonstrated that S-2 and (12)H-5 segments bind to zwitterionic phospholipids, with partition coefficients on the order of 10(4) M-1. Resonance energy transfer measurements, between donor/acceptor-labeled pairs of peptides, revealed that the peptides self-associate in their membrane-bound state, which may correlate with the existence of functional interactions between the conserved (12)H-5 regions of different subunits of K+ channels (Kirsch et al., 1993).(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验