Lumb K J, Carr C M, Kim P S
Howard Hughes Medical Institute, Cambridge, Massachusetts.
Biochemistry. 1994 Jun 14;33(23):7361-7. doi: 10.1021/bi00189a042.
One popular model for protein folding, the framework model, postulates initial formation of secondary structure elements, which then assemble into the native conformation. However, short peptides that correspond to secondary structure elements in proteins are often only marginally stable in isolation. A 33-residue peptide (GCN4-p1) corresponding to the GCN4 leucine zipper folds as a parallel, two-stranded coiled coil [O'Shea, E.K., Klemm, J.D., Kim, P.S., & Alber, T.A. (1991) Science 254, 539-544]. Deletion of the first residue (Arg 1) results in local, N-terminal unfolding of the coiled coil, suggesting that a stable subdomain of GCN4-p1 can form. N- and C-terminal deletion studies result in a 23-residue peptide, corresponding to residues 8-30 of GCN4-p1, that folds as a parallel, two-stranded coil with substantial stability (the melting temperature of a 1 mM solution is 43 degrees C at pH 7). In contrast, a closely related 23-residue peptide (residues 11-33 of GCN4-p1) is predominantly unfolded, even at 0 degrees C, as observed previously for many isolated peptides of similar length. Thus, specific tertiary packing interactions between two short units of secondary structure can be energetically more important in stabilizing folded structure than secondary structure propensities. These results provide strong support for the notion that stable, cooperatively folded subdomains are the important determinants of protein folding.
一种流行的蛋白质折叠模型——框架模型,假定二级结构元件首先形成,然后组装成天然构象。然而,与蛋白质中的二级结构元件相对应的短肽在单独存在时往往只是勉强稳定。一个与GCN4亮氨酸拉链相对应的33个残基的肽(GCN4-p1)折叠成一个平行的双链卷曲螺旋结构[奥谢,E.K.,克莱姆,J.D.,金,P.S.,& 阿尔伯,T.A.(1991年)《科学》254,539 - 544]。删除第一个残基(精氨酸1)会导致卷曲螺旋结构的局部N端展开,这表明GCN4-p1可以形成一个稳定的亚结构域。N端和C端缺失研究得到了一个23个残基的肽,对应于GCN4-p1的8 - 30位残基,它折叠成一个具有相当稳定性的平行双链螺旋结构(在pH 7时,1 mM溶液的解链温度为43摄氏度)。相比之下,一个密切相关的23个残基的肽(GCN4-p1的11 - 33位残基)即使在0摄氏度时也主要处于未折叠状态,正如之前对许多类似长度的分离肽所观察到的那样。因此,在稳定折叠结构方面,两个二级结构短单元之间特定的三级堆积相互作用在能量上可能比二级结构倾向更重要。这些结果为稳定的、协同折叠的亚结构域是蛋白质折叠的重要决定因素这一观点提供了有力支持。