Suppr超能文献

Satellite glial cell responses to neuronal firing in the nervous system of Helix pomatia.

作者信息

Gommerat I, Gola M

机构信息

Laboratoire de Neurobiologie, C.N.R.S., Marseille, France.

出版信息

J Membr Biol. 1994 Mar;138(3):209-19. doi: 10.1007/BF00232793.

Abstract

Patch clamp experiments were conducted on satellite glial cells attached to the cell body of neurons in place within the nervous system of the snail Helix pomatia. The glial cells were studied using cell-attached and whole-cell patch clamp configurations while the underlying neurons were under current or voltage clamp control. The resting potential of the glial cells (-69 mV) was more negative than that of the underlying neurons (-53 mV), due to their high K+ selectivity. Densely packed K+ channels were present, some of which were active at the cell resting potential. Neuronal firing elicited a cumulative depolarization of the glial cells. Large K+ currents flowing from V-clamped neurons depolarized the glial layer by up to 30 mV. The glial depolarization was directly correlated with the size of the neuronal K+ current. The glial cells recovered their resting potential within 2-5 sec. The neuronal depolarization induced a delayed (20-30 sec) and persistent (3-4 min) increase in the glial K+ channel opening probability. Likewise, pulses of K+ (20-50 mM)-rich saline activated the glial channels, unless the underlying neuron was held hyperpolarized. In low Ca(2+)-high Mg2+ saline, neuron depolarization and K(+)-rich saline did not activate the glial K+ channels. These data indicate that a calcium-dependent signal released from the neuronal cell body was involved in glial channel regulation. Neuron-induced channel opening may help eliminate the K+ ions flowing from active neurons.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验