Suppr超能文献

Renal microvascular responses to sepsis are dependent on nitric oxide.

作者信息

Spain D A, Wilson M A, Bloom I T, Garrison R N

机构信息

Department of Surgery, University of Louisville, Kentucky.

出版信息

J Surg Res. 1994 Jun;56(6):524-9. doi: 10.1006/jsre.1994.1084.

Abstract

Nitric oxide (NO) is an important mediator of the hemodynamic response to sepsis; however, its visceral microcirculatory effects are largely unknown. To determine the role of NO in renal microvascular responses to bacteremia, rat hydronephrotic kidneys with intact neurovascular supplies were exteriorized into a tissue bath. Videomicroscopy was used to measure vessel diameters (interlobular artery, ILA; afferent arteriole, AFF; efferent arteriole, EFF) and optical Doppler velocimetry was used to quantitate ILA flow. In controls, topical L-arginine (L-Arg; 10(-4) M), the NO synthase (NO-S) substrate, resulted in mild pre- and postglomerular dilation and increased flow. Inhibition of NO-S by N omega-nitro-L-arginine methyl ester (L-NAME: 10(-4) M) caused preglomerular constriction (ILA = -22%; AFF = -20% from baseline) and reduced ILA flow by 39%, while postglomerular diameters (EFF) were unchanged. Bacteremic rats had similar alterations (ILA = -22%; AFF = -20%; flow = -56%). Topical L-NAME in bacteremic rats resulted in further constriction (ILA = -38%; AFF = -37%), decreased ILA flow (-75%) and constricted EFF (-30%). L-Arg ameliorated constriction (ILA = -11%; AFF = -7%) and flow (-34%) during bacteremia. We conclude that: (1) NO is important in basal preglomerular tone; (2) Escherichia coli causes selective preglomerular constriction and hypoperfusion; (3) maintenance of EFF tone during bacteremia is NO dependent; and (4) different pre- and postglomerular NO mechanisms exist during basal and bacteremic states. These data indicate that NO is an important mediator of renal microvascular responses to sepsis.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验