Kavsan V M, Grebenjuk V A, Koval A P, Skorokhod A S, Roberts C T, Leroith D
Institute of Molecular Biology and Genetics, Ukrainian Academy of Sciences, Kiev.
DNA Cell Biol. 1994 May;13(5):555-9. doi: 10.1089/dna.1994.13.555.
We have characterized a second nonallelic insulin-like growth factor-I (IGF-I) gene in the chum salmon (Oncorhynchus keta) genome. This gene, IGF-I.2, differs from the previously described chum salmon IGF-I gene, IGF-I.1, in the E peptide-coding portion of exon 3; specifically, the IGF-I.2 gene lacks one codon present in the IGF-I gene and contains two potential splice donor sites at the 3' end of exon 3 rather than the single, more distal site present in the IGF-I.1 gene. The expression of these two IGF-I genes could give rise to as many as six IGF-I mRNA species, each of which would encode a unique E-peptide moiety of the IGF-I prohormone. Thus, the presence of multiple, distinct IGF genes adds an additional level of complexity to IGF-I gene expression and IGF-I biosynthesis in salmon.