Suppr超能文献

使用协方差模型进行RNA序列分析。

RNA sequence analysis using covariance models.

作者信息

Eddy S R, Durbin R

机构信息

MRC Laboratory of Molecular Biology, Cambridge, UK.

出版信息

Nucleic Acids Res. 1994 Jun 11;22(11):2079-88. doi: 10.1093/nar/22.11.2079.

Abstract

We describe a general approach to several RNA sequence analysis problems using probabilistic models that flexibly describe the secondary structure and primary sequence consensus of an RNA sequence family. We call these models 'covariance models'. A covariance model of tRNA sequences is an extremely sensitive and discriminative tool for searching for additional tRNAs and tRNA-related sequences in sequence databases. A model can be built automatically from an existing sequence alignment. We also describe an algorithm for learning a model and hence a consensus secondary structure from initially unaligned example sequences and no prior structural information. Models trained on unaligned tRNA examples correctly predict tRNA secondary structure and produce high-quality multiple alignments. The approach may be applied to any family of small RNA sequences.

摘要

我们描述了一种使用概率模型来解决多个RNA序列分析问题的通用方法,该模型可以灵活地描述RNA序列家族的二级结构和一级序列共有序列。我们将这些模型称为“协方差模型”。tRNA序列的协方差模型是在序列数据库中搜索其他tRNA和tRNA相关序列的极其灵敏且具有区分性的工具。一个模型可以从现有的序列比对中自动构建。我们还描述了一种算法,用于从最初未比对的示例序列且无先验结构信息的情况下学习模型,进而学习共有二级结构。在未比对的tRNA示例上训练的模型能够正确预测tRNA二级结构并生成高质量的多序列比对。该方法可应用于任何小RNA序列家族。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验