Grard T, Saint-Pol A, Haeuw J F, Alonso C, Wieruszeski J M, Strecker G, Michalski J C
Laboratoire de Chimie Biologique, (Unité mixte de Recherche du Centre National de la Recherche Scientifique no. 111), Université des Sciences et Technologies de Lille, France.
Eur J Biochem. 1994 Jul 1;223(1):99-106. doi: 10.1111/j.1432-1033.1994.tb18970.x.
We have previously reported the substrate specificity of the rat liver cytosolic alpha-D-mannosidase [Haeuw, J. F., Strecker, G., Wieruszeski, J. M., Montreuil, J. & Michalski, J.-C. (1991) Eur. J. Biochem. 202, 1257-1268]. Here, we report the characterization and the purification of this alpha-D-mannosidase and the presence of two soluble forms of alpha-D-mannosidases from rat liver. The cytosolic alpha-D-mannosidase was purified nearly 660-fold with 2.66% recovery to a state approaching homogeneity using: (a) (NH4)2SO4 precipitation; (b) concanavalin-A-Sepharose chromatography; (c) affinity chromatography on a cobalt-chelating Sepharose column; (d) ion-exchange (DEAE-trisacryl M) column chromatography; (e) molecular-size chromatography (Sephacryl S 200). The enzyme was eluted from the final column at an apparent molecular mass of 113 kDa. SDS/PAGE analysis yielded a major protein band at 108 kDa. Moreover, the purification allowed to distinguish two mannosidase activities with different kinetic properties. The first cytosolic activity retained on the cobalt-chelating column was optimally active at neutral pH, was activated by Co2+, was strongly inhibited by swainsonine (Ki = 3.7 microM) but not by deoxymannojirimycin and was active with p-nitrophenyl alpha-D-mannoside (Km = 0.072 mM). Man9GlcNAc was hydrolysed by the purified enzyme down to a Man5GlcNAc structure, i.e. Man(alpha 1-2)Man(alpha 1-2)Man(alpha 1-3)[Man(alpha 1-6)]Man(beta 1-4) GlcNA c, which represents the Man5 oligosaccharide chain of the dolichol pathway formed in the cytosolic compartment during the biosynthesis of N-glycosylprotein glycans. The second activity not retained on the cobalt-chelating column was optimally active at neutral pH, was inhibited by swainsonine (Ki = 28.4 microM) but not by deoxymannojirimycin and was active with p-nitrophenyl alpha-D-mannoside (Km = 0.633 mM). Man9GlcNAc was broken by this enzymic activity down to Man8GlcNAc and Man7GlcNAc structures. Similitaries with endoplasmic reticulum alpha-D-mannosidase exist and this enzyme could be the cytosolic form of the endoplasmic reticulum alpha-D-mannosidase.
我们之前报道过大鼠肝脏胞质α-D-甘露糖苷酶的底物特异性[Haeuw, J. F., Strecker, G., Wieruszeski, J. M., Montreuil, J. & Michalski, J.-C. (1991) Eur. J. Biochem. 202, 1257 - 1268]。在此,我们报道了这种α-D-甘露糖苷酶的特性、纯化过程以及大鼠肝脏中两种可溶性α-D-甘露糖苷酶的存在情况。使用以下方法将胞质α-D-甘露糖苷酶纯化了近660倍,回收率为2.66%,达到接近均一的状态:(a)硫酸铵沉淀;(b)伴刀豆球蛋白A-琼脂糖层析;(c)钴螯合琼脂糖柱亲和层析;(d)离子交换(DEAE-三丙烯酸M)柱层析;(e)分子大小层析(Sephacryl S 200)。该酶从最终柱上洗脱时的表观分子量为113 kDa。SDS/PAGE分析在108 kDa处产生一条主要蛋白带。此外,纯化过程使我们能够区分两种具有不同动力学性质的甘露糖苷酶活性。保留在钴螯合柱上的第一种胞质活性在中性pH下活性最佳,被Co2+激活,被苦马豆素强烈抑制(Ki = 3.7 μM),但不被脱氧野尻霉素抑制,并且对对硝基苯基α-D-甘露糖苷有活性(Km = 0.072 mM)。纯化后的酶将Man9GlcNAc水解为Man5GlcNAc结构,即Man(α1-2)Man(α1-2)Man(α1-3)[Man(α1-6)]Man(β1-4)GlcNAc,它代表在N-糖基化蛋白聚糖生物合成过程中在胞质区室形成的多萜醇途径的Man5寡糖链。未保留在钴螯合柱上的第二种活性在中性pH下活性最佳,被苦马豆素抑制(Ki = 28.4 μM),但不被脱氧野尻霉素抑制,并且对对硝基苯基α-D-甘露糖苷有活性(Km = 0.633 mM)。这种酶活性将Man9GlcNAc分解为Man8GlcNAc和Man7GlcNAc结构。与内质网α-D-甘露糖苷酶存在相似之处,这种酶可能是内质网α-D-甘露糖苷酶的胞质形式。