Suppr超能文献

Calcium-dependent regulation of rat and chick muscle nicotinic acetylcholine receptor (nAChR) gene expression.

作者信息

Walke W, Staple J, Adams L, Gnegy M, Chahine K, Goldman D

机构信息

Department of Biological Chemistry, University of Michigan, Ann Arbor 48109.

出版信息

J Biol Chem. 1994 Jul 29;269(30):19447-56.

PMID:8034713
Abstract

Muscle depolarization leads to decreased expression of nicotinic acetylcholine receptor (nAChR) genes in extrajunctional regions of the muscle fiber with little effect on their expression at the neuromuscular junction (NMJ). Depolarization-dependent decreases in nAChR gene expression have been linked to a cAMP-dependent signaling system in rat (Chahine, K. G., Baracchini, E., and Goldman, D. (1993) J. Biol. Chem. 2893-2898), and a calcium-dependent protein kinase C (PKC) signaling system in chick (Klarsfeld, A., Laufer, R., Fontaine, B., Devillers-Thiery, A., Bubreuil, C., and Changeux, J. P. (1989) Neuron 2, 1229-1236). We report here on experiments investigating the role of calcium and PKC in regulating rat muscle nAChR gene expression. These studies indicate that depolarization-dependent regulation of rat muscle nAChR gene expression is independent of PKC activity. However, these genes are regulated by a calcium-dependent signal transduction system. Calcium influx across the plasma membrane decreases nAChR gene expression in inactive rat myotubes. Surprisingly, this influx of extracellular calcium is most effective at reducing nAChR epsilon-subunit gene expression. We also provide evidence that a similar signal transduction system is capable of regulating nAChR gene expression in chick muscle. Based on these data we propose that calcium, in addition to mediating depolarization-dependent regulation of nAChR expression, may also participate in restricting their expression to the neuromuscular junctions of adult muscle fibers.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验