Suppr超能文献

如何解释果蝇基因组中重组率低的区域DNA序列变异水平较低的现象?

How can the low levels of DNA sequence variation in regions of the drosophila genome with low recombination rates be explained?

作者信息

Hudson R R

机构信息

Department of Ecology and Evolutionary Biology, University of California, Irvine 92717.

出版信息

Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6815-8. doi: 10.1073/pnas.91.15.6815.

Abstract

Different regions of the Drosophila genome have very different rates of recombination. For example, near centromeres and near the tips of chromosomes, the rates of recombination are much lower than in other regions. Several surveys of polymorphisms in Drosophila have now documented that levels of DNA polymorphism are positively correlated with rates of recombination; i.e., regions with low rates of recombination tend to have low levels of DNA polymorphism within populations of Drosophila. Three hypotheses are reviewed that might account for these observations. The first hypothesis is that regions of low recombination have low neutral mutation rates. Under this hypothesis between-species divergences should also be low in regions of low recombination. In fact, regions of low recombination have diverged at the same rate as other regions of the genome. On this basis, this strictly neutral hypothesis is rejected. The second hypothesis is that the process of fixation of favorable mutations leads to the observed correlation between polymorphism and recombination. This occurs via genetic hitchhiking, in which linked regions of the genome are swept along with the selectively favored mutant as it increases in frequency and eventually fixes in the population. This hitchhiking model with fixation of favorable mutations is compatible with major features of the data. By assuming this model is correct, one can estimate the rate of fixation of favorable mutations. The third hypothesis is that selection against continually arising deleterious mutations results in reduced levels of polymorphism at linked loci. Analysis of this background selection model shows that it can produce some reduction in levels of polymorphism but cannot explain some extreme cases that have been observed. Thus, it appears that hitchhiking of favorable mutations and background selection against deleterious mutations must be considered together to correctly account for the patterns of polymorphism that are observed in Drosophila.

摘要

果蝇基因组的不同区域具有非常不同的重组率。例如,在着丝粒附近和染色体末端附近,重组率比其他区域低得多。现在,对果蝇多态性的几项调查已经证明,DNA多态性水平与重组率呈正相关;也就是说,在果蝇种群中,重组率低的区域往往具有低水平的DNA多态性。本文综述了三种可能解释这些观察结果的假说。第一种假说是,重组率低的区域具有低的中性突变率。在这个假说下,低重组率区域的物种间差异也应该较低。事实上,低重组率区域与基因组的其他区域以相同的速率发生了分化。基于此,这个严格的中性假说被否定。第二种假说是,有利突变的固定过程导致了观察到的多态性与重组之间的相关性。这是通过遗传搭便车发生的,在遗传搭便车过程中,随着选择性有利突变在频率上增加并最终在种群中固定下来,基因组的连锁区域也随之被带动。这种有利突变固定的搭便车模型与数据的主要特征是相符的。假设这个模型是正确的,就可以估计有利突变的固定率。第三种假说是,针对不断出现的有害突变的选择导致连锁位点的多态性水平降低。对这种背景选择模型的分析表明,它可以使多态性水平有所降低,但无法解释一些已观察到的极端情况。因此,似乎必须同时考虑有利突变的搭便车和针对有害突变的背景选择,才能正确解释在果蝇中观察到的多态性模式。

相似文献

2
Analysis of a genetic hitchhiking model, and its application to DNA polymorphism data from Drosophila melanogaster.
Mol Biol Evol. 1993 Jul;10(4):842-54. doi: 10.1093/oxfordjournals.molbev.a040046.
6
The relations between recombination rate and patterns of molecular variation and evolution in Drosophila.
Annu Rev Genet. 2014;48:383-403. doi: 10.1146/annurev-genet-120213-092525. Epub 2014 Sep 10.
7
Background selection as null hypothesis in population genomics: insights and challenges from studies.
Philos Trans R Soc Lond B Biol Sci. 2017 Dec 19;372(1736). doi: 10.1098/rstb.2016.0471.
8
Adaptive Evolution Is Substantially Impeded by Hill-Robertson Interference in Drosophila.
Mol Biol Evol. 2016 Feb;33(2):442-55. doi: 10.1093/molbev/msv236. Epub 2015 Oct 22.
9
Evolution at the tip and base of the X chromosome in an African population of Drosophila melanogaster.
Mol Biol Evol. 1995 May;12(3):382-90. doi: 10.1093/oxfordjournals.molbev.a040213.

引用本文的文献

2
Efficiently Summarizing Relationships in Large Samples: A General Duality Between Statistics of Genealogies and Genomes.
Genetics. 2020 Jul;215(3):779-797. doi: 10.1534/genetics.120.303253. Epub 2020 May 1.
3
The Linked Selection Signature of Rapid Adaptation in Temporal Genomic Data.
Genetics. 2019 Nov;213(3):1007-1045. doi: 10.1534/genetics.119.302581. Epub 2019 Sep 26.
4
Tree-sequence recording in SLiM opens new horizons for forward-time simulation of whole genomes.
Mol Ecol Resour. 2019 Mar;19(2):552-566. doi: 10.1111/1755-0998.12968. Epub 2019 Feb 21.
6
The Impact of Linked Selection in Chimpanzees: A Comparative Study.
Genome Biol Evol. 2016 Oct 30;8(10):3202-3208. doi: 10.1093/gbe/evw240.
7
A Genomic Map of the Effects of Linked Selection in Drosophila.
PLoS Genet. 2016 Aug 18;12(8):e1006130. doi: 10.1371/journal.pgen.1006130. eCollection 2016 Aug.
9
Genome differentiation of Drosophila melanogaster from a microclimate contrast in Evolution Canyon, Israel.
Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):21059-64. doi: 10.1073/pnas.1321533111. Epub 2013 Dec 9.
10
Coalescence and genetic diversity in sexual populations under selection.
Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15836-41. doi: 10.1073/pnas.1309697110. Epub 2013 Sep 9.

本文引用的文献

1
The mutational load with epistatic gene interactions in fitness.
Genetics. 1966 Dec;54(6):1337-51. doi: 10.1093/genetics/54.6.1337.
4
The effect of deleterious mutations on neutral molecular variation.
Genetics. 1993 Aug;134(4):1289-303. doi: 10.1093/genetics/134.4.1289.
5
Analysis of a genetic hitchhiking model, and its application to DNA polymorphism data from Drosophila melanogaster.
Mol Biol Evol. 1993 Jul;10(4):842-54. doi: 10.1093/oxfordjournals.molbev.a040046.
7
Mutation rate and dominance of genes affecting viability in Drosophila melanogaster.
Genetics. 1972 Oct;72(2):335-55. doi: 10.1093/genetics/72.2.335.
8
The hitch-hiking effect of a favourable gene.
Genet Res. 1974 Feb;23(1):23-35.
9
The detection of deleterious selection using ancestors inferred from a phylogenetic history.
Genet Res. 1987 Feb;49(1):71-82. doi: 10.1017/s0016672300026768.
10
Molecular population genetics of the alcohol dehydrogenase gene region of Drosophila melanogaster.
Genetics. 1986 Dec;114(4):1165-90. doi: 10.1093/genetics/114.4.1165.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验