Chook Y M, Gray J V, Ke H, Lipscomb W N
Department of Chemistry, Harvard University, Cambridge, MA 02138.
J Mol Biol. 1994 Jul 29;240(5):476-500. doi: 10.1006/jmbi.1994.1462.
Structures have been determined for chorismate mutase from Bacillus subtilis and of complexes of this enzyme with product and an endo-oxabicyclic transition state analog using multiple isomorphous replacement plus partial structure phase combination and non-crystallographic averaging. In addition to 522 water molecules, the model includes 1380 of the 1524 amino acid residues of the four trimers (each containing 3 x 127 amino acid residues) in the asymmetric unit. Refinement to 1.9 A resolution yields 0.194 for R and r.m.s. deviations from ideal values of 0.014 A for bond lengths and 2.92 degrees for bond angles. The trimer resembles a beta-barrel structure in which a core beta-sheet is surrounded by helices. The structures of the two complexes locate the active sites which are at the interfaces of adjacent pairs of monomers in the trimer. These structures have been refined at 2.2 A to a crystallographic R value of 0.18 and show r.m.s. deviations from ideal values of 0.013 A for bond lengths and 2.84 degrees or 3.05 degrees for bond angles, respectively. The final models have 1398 amino acid residues, nine prephenate molecules and 503 water molecules in the product complex, and 1403 amino acid residues, 12 inhibitor molecules and 530 water molecules in the transition state complex. The active sites of all three of these structures are very similar and provide a structural basis for the biochemical studies that indicate a pericyclic mechanism for conversion of chorismate to prephenate. The absence of reactive catalytic residues on the enzyme, the selective binding of the single reactive conformation of chorismate, the stabilization of the polar transition state, and the possible role of the C-terminal region in "capping" the active site are factors which relate these structures to the million-fold rate enhancement of this reaction.
已通过多同晶置换加部分结构相位组合和非晶体学平均法,确定了来自枯草芽孢杆菌的分支酸变位酶及其与产物和内氧双环过渡态类似物的复合物的结构。除了522个水分子外,该模型还包括不对称单元中四个三聚体(每个三聚体包含3×127个氨基酸残基)的1524个氨基酸残基中的1380个。精修至1.9埃分辨率时,R值为0.194,键长与理想值的均方根偏差为0.014埃,键角偏差为2.92度。三聚体类似于β-桶状结构,其中核心β-折叠被螺旋包围。两种复合物的结构确定了活性位点,这些活性位点位于三聚体中相邻单体对的界面处。这些结构已在2.2埃分辨率下精修至晶体学R值为0.18,键长与理想值的均方根偏差分别为0.013埃,键角偏差为2.84度或3.05度。最终模型中,产物复合物有1398个氨基酸残基、9个预苯酸分子和503个水分子,过渡态复合物有1403个氨基酸残基、12个抑制剂分子和530个水分子。所有这三种结构的活性位点非常相似,为表明分支酸转化为预苯酸的周环机制的生化研究提供了结构基础。酶上不存在反应性催化残基、分支酸单一反应性构象的选择性结合、极性过渡态的稳定以及C端区域在“封闭”活性位点中可能的作用,这些因素将这些结构与该反应百万倍的速率增强联系起来。