Suppr超能文献

在两阶段交叉设计中拟合多元多项式增长曲线。

Fitting multivariate polynomial growth curves in two-period crossover designs.

作者信息

Grender J M, Johnson W D

机构信息

Department of Biometry and Genetics, Louisiana State University Medical Center, New Orleans 70112-1393.

出版信息

Stat Med. 1994 May 15;13(9):931-43. doi: 10.1002/sim.4780130904.

Abstract

We discuss the statistical analysis of data from two clinical trials using crossover designs. In both studies, response was observed repeatedly over time in each treatment period. The first study involves repeated measurements of a single response variable whereas the second involves bivariate response. Methods are described for fitting polynomial growth curves to achieve data reduction in a two-stage approach to the analysis of crossover designs. Thus, a multivariate parametric analysis frequently can be conducted even when the sample sizes are somewhat small as is the case in many crossover designs. Hypotheses that are usually of interest in crossover designs can be tested in the second stage of the analysis. Methods for testing the multivariate general linear hypothesis as a basis for statistical inference in such problems are discussed.

摘要

我们讨论了来自两项采用交叉设计的临床试验数据的统计分析。在这两项研究中,在每个治疗期内都对反应进行了多次观察。第一项研究涉及对单个反应变量的重复测量,而第二项研究涉及双变量反应。描述了拟合多项式生长曲线的方法,以通过两阶段方法实现数据简化,用于交叉设计的分析。因此,即使样本量在许多交叉设计中较小,通常也可以进行多变量参数分析。在分析的第二阶段可以检验交叉设计中通常感兴趣的假设。讨论了检验多变量一般线性假设作为此类问题统计推断基础的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验