Suppr超能文献

The conformational analysis of a synthetic S4 peptide corresponding to a voltage-gated potassium ion channel protein.

作者信息

Haris P I, Ramesh B, Brazier S, Chapman D

机构信息

Department of Protein and Molecular Biology, Royal Free Hospital School of Medicine, University of London, UK.

出版信息

FEBS Lett. 1994 Aug 8;349(3):371-4. doi: 10.1016/0014-5793(94)00704-7.

Abstract

The S4 region of the Drosophila Shaker voltage-gated K+ channel has been proposed to function as a voltage-sensor. We have synthesised a peptide corresponding to this S4 region. Structural studies on the S4 peptide were conducted using Fourier transform infrared (FTIR) spectroscopy. Spectra were obtained for the peptide dissolved in aqueous solution, in trifluoroethanol solvent and also after reconstitution into lipid bilayers and micelles. The peptide in trifluoroethanol adopts an alpha-helical conformation which is in good agreement with the results of a recent 2D NMR study on the structure of a S4 peptide corresponding to the rat brain sodium channel [(1989) FEBS Lett. 257, 113-117]. A predominantly alpha-helical structure is also observed when the S4 peptide is present in aqueous lysophosphatidylcholine micelles, in dimyristoyl phosphatidylcholine and dimyristoyl phosphatidylglycerol lipid bilayers. In contrast to this, the S4 peptide in aqueous solution is in a random coil conformation. The coil-to-helix transition observed for the S4 peptide upon its transfer from aqueous solution to lipid membrane indicates that it has a high degree of conformational flexibility and can undergo large changes in its structure in response to its environment. This may have important implications for its role in the voltage activation process during which the S4 peptide has been postulated to, at least partially, move from a lipid bilayer to an aqueous extracellular media [(1992) Biophys J. 62, 238-250]. The results of our study lend support to such a model.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验