Reilly K E, Thomas G J
Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City 64110-2499.
J Mol Biol. 1994 Aug 5;241(1):68-82. doi: 10.1006/jmbi.1994.1474.
We describe the application of laser Raman spectroscopy to probe hydrogen isotope exchange dynamics of nucleic acid and protein constituents in a double-stranded DNA virus, the icosahedral bacteriophage P22. The Raman dynamic method employs a dialysis flow cell to control D2O efflux into an H2O solution of the virus sample while the rates of deuterium exchange of protons in the viral nucleic acid and protein molecules are measured spectrophotometrically in real time. The method provides structural and kinetic information about three different and distinct classes of exchangeable protons of the native virion: (1) labile imino (NH) and amino (NH2) protons of the bases which participate in Watson-Crick hydrogen bonding in the packaged genome; (2) pseudolabile purinic (8CH) protons that line the major groove of packaged P22 DNA; and (3) main-chain amide (NH) protons of viral subunits comprising the shell that encapsidates the DNA. The results obtained on P22 demonstrate that interchange of aqueous solvent with the virion interior is rapid and complete. We find that while labile protons of packaged DNA exchange rapidly, most amide protons in capsid subunits are resistant to solvent-catalyzed exchange. Further, stereospecific retardation of exchange is observed for major-groove protons of the packaged P22 genome. The quantitative measurements can be summarized and interpreted as follows. (1) Imino and amino protons of all bases in packaged P22 DNA exchange more rapidly (approximately 2-fold faster) than the corresponding protons in unpackaged P22 DNA. Remarkably, packaging actually accelerates labile imino and amino hydrogen exchanges of the viral DNA, an effect which can be attributed to selective stabilization in the packaged chromosome of a base-pair open state (breathing model). (2) Conversely, purine 8CH exchange rates in packaged P22 DNA are significantly retarded in comparison to those of unpackaged P22 DNA. The observed 8CH exchange retardation effects are similar for both adenine and guanine residues, indicating that they do not originate from purine-specific interactions but probably reflect steric shielding of the major groove of packaged DNA from free access to solvent. This effect is likely distributed throughout the 43,400 base-pair genome. (3) Only a small population (approximately 15 to 20%) of subunit amide protons exchanges within the time frame of complete exchange of all protons of packaged P22 DNA. Complete exchange of the capsid is not achieved even after several months of incubation at 40 degrees C.(ABSTRACT TRUNCATED AT 400 WORDS)
我们描述了激光拉曼光谱在探测双链DNA病毒——二十面体噬菌体P22中核酸和蛋白质成分的氢同位素交换动力学方面的应用。拉曼动力学方法采用透析流通池来控制重水向病毒样品的H2O溶液中的流出,同时通过分光光度法实时测量病毒核酸和蛋白质分子中质子的氘交换速率。该方法提供了关于天然病毒体中三类不同且独特的可交换质子的结构和动力学信息:(1)参与包装基因组中沃森-克里克氢键形成的碱基的不稳定亚氨基(NH)和氨基(NH2)质子;(2)排列在包装的P22 DNA大沟中的假不稳定嘌呤(8CH)质子;(3)构成包裹DNA的外壳的病毒亚基的主链酰胺(NH)质子。在P22上获得的结果表明,水性溶剂与病毒体内部的交换迅速且完全。我们发现,虽然包装DNA的不稳定质子交换迅速,但衣壳亚基中的大多数酰胺质子对溶剂催化的交换具有抗性。此外,在包装的P22基因组的大沟质子中观察到交换的立体特异性延迟。定量测量结果可总结并解释如下。(1)包装的P22 DNA中所有碱基的亚氨基和氨基质子的交换速度比未包装的P22 DNA中的相应质子快(约快2倍)。值得注意的是,包装实际上加速了病毒DNA不稳定亚氨基和氨基氢的交换,这种效应可归因于包装染色体中碱基对开放状态(呼吸模型)的选择性稳定。(2)相反,与未包装的P22 DNA相比,包装的P22 DNA中的嘌呤8CH交换速率显著延迟。腺嘌呤和鸟嘌呤残基的8CH交换延迟效应相似,表明它们并非源于嘌呤特异性相互作用,而可能反映了包装DNA大沟对溶剂自由进入的空间屏蔽。这种效应可能分布在整个43,400个碱基对的基因组中。(3)在包装的P22 DNA所有质子完全交换的时间范围内,只有一小部分(约15%至20%)的亚基酰胺质子发生交换。即使在40摄氏度下孵育数月,衣壳也未实现完全交换。(摘要截于400字)