Suppr超能文献

Preparation of agglomerated crystals for direct tabletting and microencapsulation by the spherical crystallization technique with a continuous system.

作者信息

Niwa T, Takeuchi H, Hino T, Itoh A, Kawashima Y, Kiuchi K

机构信息

Department of Pharmaceutical Engineering, Gifu Pharmaceutical University, Japan.

出版信息

Pharm Res. 1994 Apr;11(4):478-84. doi: 10.1023/a:1018993927582.

Abstract

Adhesive and cohesive properties of chlorpromazine hydrochloride (CP) crystals were modified to improve their powder processing, e.g., direct tabletting and microencapsulation, by agglomeration. Moreover, sustained-released gelling microcapsules of CP were devised to prolong the pharmacological effect. The spherical crystallization technique was applied to prepare agglomerates for direct tabletting and microencapsulation to use them as core materials. The ethanolic solution dissolving CP was poured into a stirred cyclohexane, yielding spherically agglomerated crystals. The resultant agglomerates were free-flowing and easily packable spheres with average diameters of 200 to 1000 microns. The agglomerates reserved the high compressibility of the original powder having a small particle size (14 microns). The compression behavior represented by Heckel's equation suggested that the agglomerates were disintegrated to individual primary crystals at low compression pressures, and then they were closely repacked and plastically deformed at higher pressures. After agglomeration, microencapsulation was continuously performed in the same batch by a phase separation method. Coacervate droplets produced by pouring cyclohexane into a dichloromethane solution, dissolving polyvinyl acetate as a coating polymer, were added to the crystallization system under stirring, to prepare the microcapsules. By filling the microcapsules in gelatin hard capsules or tabletting them, their drug release rates became retarded compared with the physical mixture treated in the same way, having the same formulation as the microcapsules. This phenomenon was due to the gelation of polyvinyl acetate of the microcapsules in the dissolution medium, whose glass transition temperature is very low. This novel sustained-release dosage form is termed "gelled microcapsules."

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验