Suppr超能文献

Nigral type I astrocytes release a soluble factor that increases dopaminergic neuron survival through mechanisms distinct from basic fibroblast growth factor.

作者信息

O'Malley E K, Sieber B A, Morrison R S, Black I B, Dreyfus C F

机构信息

Department of Neuroscience and Cell Biology, UMDNJ/Robert Wood Johnson Medical School, Piscataway 08854.

出版信息

Brain Res. 1994 May 30;647(1):83-90. doi: 10.1016/0006-8993(94)91401-x.

Abstract

Our studies have been directed to the identification of local, naturally-occurring molecules that support substantia nigra (SN) dopaminergic (DA) neuron survival. We have previously demonstrated that local Type I astrocytes selectively increase the dopaminergic population [30,31]. However, the mechanism of action remains to be defined. To determine whether survival is elicited through diffusible agents, Type I astrocyte conditioned medium (CM) was tested on SN dissociates. After 7 days of exposure to CM, DA neuronal integrity was monitored immunocytochemically with antibody to tyrosine hydroxylase (TH), the DA biosynthetic enzyme, or by TH catalytic assay. CM increased TH+ cell number greater than 2-fold, suggesting that a soluble factor(s) promoted neuron survival. Neurons cultured in serum free medium (SFM) are known to contain few, but detectable numbers of glia [34]. To examine whether CM affected neurons directly, or indirectly through glia, glial populations were stained with antibody against the glial marker, glial fibrillary acidic protein (GFAP). We employed several approaches to define the potential role of glia. Initially, CM was compared to basic fibroblast growth factor (bFGF), a glial mitogen that reportedly enhances nigral DA neuron survival. bFGF enhanced TH activity in our system, as well, but the effect was blocked by the mitotic inhibitor 5-fluorodeoxyuridine (FDUR), which kills dividing glia. In parallel studies CM increased enzyme activity and TH cell number in cultures exhibiting GFAP+ cells. To define the role of these glial cells in the CM effect, we completely eliminated astrocytes in CM-treated cultures employing alpha-aminoadipic acid (AA; 10-30 microM), a specific gliotoxin. At a concentration of AA that eliminated detectable GFAP+ cells, CM continued to elicit a significant increase in TH cell number. These data suggest that, in contrast to effects of bFGF, the DA neurotrophic activity in CM acts directly on nigral neurons to enhance survival.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验