Bolt H M
Institut für Arbeitsphysiologie, Universität Dortmund, Germany.
IARC Sci Publ. 1993(127):37-44.
Investigations on the pharmacokinetics of inhalation of 1,3-butadiene and its primary reactive intermediate, epoxybutene, in mice and rats have demonstrated reasonably clearly that the species differences observed in the carcinogenicity of butadiene are accompanied by species differences in its metabolism. Mice metabolize butadiene to epoxybutene faster than rats but have a limited capacity for detoxification and accumulation of the reactive epoxide intermediate; these characteristics are viewed as major determinants of the greater susceptibility of mice to butadiene. The detection of alkylation products of epoxybutene and diepoxybutane with guanine residues in DNA of livers of mice exposed to butadiene indicate that eposybutene is further biotransformed to diepoxybutane in this species. This assumption is supported by the finding that butadiene induces cross-linking between DNA and proteins in mice, which can be attributed to the bifunctional alkylating diepoxybutane. Quantitative differences between rats and mice in butadiene metabolism and in the biological effectiveness of the reactive epoxide intermediates reflect the activities of different enzymes in butadiene metabolism. Epoxybutene is metabolized primarily via glutathione S-transferase-mediated pathways, resulting in glutathione depletion, increased toxicity at higher doses and covalent binding of reactive butadiene intermediates. A drastic depletion of non-protein sulfhydryl is observed in the tissues of mice but not of rats after acute exposure to butadiene. Isobutene (2-methylpropene) is converted by hepatic monooxygenase(s) to the epoxide, 2,2-dimethyloxirane. This epoxide, when appropriately tested, was mutagenic to Salmonellatyphimurium strains TA100 and TA1535. Addition of an exogenous metabolic system diminished the mutagenicity of 2,2-dimethyloxirane.(ABSTRACT TRUNCATED AT 250 WORDS)
对小鼠和大鼠吸入1,3 - 丁二烯及其主要反应性中间体环氧丁烯的药代动力学研究已相当清楚地表明,丁二烯致癌性中观察到的种属差异伴随着其代谢的种属差异。小鼠将丁二烯代谢为环氧丁烯的速度比大鼠快,但对反应性环氧化物中间体的解毒和积累能力有限;这些特征被视为小鼠对丁二烯更易感性的主要决定因素。在接触丁二烯的小鼠肝脏DNA中检测到环氧丁烯和1,2 - 二环氧丁烷与鸟嘌呤残基的烷基化产物,表明在该物种中环氧丁烯进一步生物转化为1,2 - 二环氧丁烷。这一假设得到以下发现的支持:丁二烯在小鼠中诱导DNA与蛋白质之间的交联,这可归因于双功能烷基化剂1,2 - 二环氧丁烷。大鼠和小鼠在丁二烯代谢以及反应性环氧化物中间体的生物学效应方面的定量差异反映了丁二烯代谢中不同酶的活性。环氧丁烯主要通过谷胱甘肽S - 转移酶介导的途径代谢,导致谷胱甘肽耗竭、高剂量时毒性增加以及反应性丁二烯中间体的共价结合。急性接触丁二烯后,在小鼠组织中观察到非蛋白巯基的急剧耗竭,而在大鼠组织中未观察到。异丁烯(2 - 甲基丙烯)被肝脏单加氧酶转化为环氧化物2,2 - 二甲基环氧乙烷。当对该环氧化物进行适当测试时,它对鼠伤寒沙门氏菌菌株TA100和TA1535具有致突变性。添加外源性代谢系统可降低2,2 - 二甲基环氧乙烷的致突变性。(摘要截短于250字)