Suppr超能文献

1,2-环氧丁烯-3的吸入药代动力学揭示了对丁二烯诱导致癌敏感的大鼠和小鼠之间的种属差异。

Inhalation pharmacokinetics of 1,2-epoxybutene-3 reveal species differences between rats and mice sensitive to butadiene-induced carcinogenesis.

作者信息

Kreiling R, Laib R J, Filser J G, Bolt H M

机构信息

Institut für Arbeitsphysiologie, Universität Dortmund, Federal Republic of Germany.

出版信息

Arch Toxicol. 1987;61(1):7-11. doi: 10.1007/BF00324541.

Abstract

Comparative investigations of inhalation pharmacokinetics of 1,2-epoxybutene-3 (vinyl oxirane, the primary reactive intermediate of butadiene) revealed major differences in metabolism of this compound between rats and mice. Whereas in rats no indication of saturation kinetics of epoxybutene metabolism could be observed up to exposure concentrations of 5000 ppm, in mice saturation of epoxybutene metabolism becomes apparent at atmospheric concentrations of about 500 ppm. The estimated maximal metabolic rate (Vmax) in mice for epoxybutene was only 350 mumol X h-1 X kg-1 (rats: greater than 2600 mumol X h-1 X kg-1). In the lower concentration range where first order metabolism applies (up to about 500 ppm) epoxybutene is metabolized by mice at higher rates compared to rats (metabolic clearance per kg body weight, mice: 24,900 ml X h-1, rats: 13,400 ml X h-1). Under these conditions the steady state concentration of epoxybutene in the mouse is about 10 times that in the rat. When mice are exposed to high concentrations of butadiene (greater than 2000 ppm; conditions of saturation of butadiene metabolism; closed exposure system) epoxybutene is exhaled by the animals, and its concentration in the gas phase increases with exposure time. At about 10 ppm epoxybutene signs of acute toxicity are observed. When rats are exposed to butadiene under similar conditions, the epoxybutene concentration reaches a plateau at about 4 ppm. Under these conditions hepatic non-protein sulfhydryl compounds are virtually depleted in mice but not in rats.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

对1,2 - 环氧丁烯 - 3(乙烯基环氧乙烷,丁二烯的主要反应中间体)吸入药代动力学的比较研究表明,该化合物在大鼠和小鼠体内的代谢存在重大差异。在大鼠中,直至暴露浓度达到5000 ppm时,均未观察到环氧丁烯代谢的饱和动力学迹象;而在小鼠中,当大气浓度约为500 ppm时,环氧丁烯代谢的饱和现象就很明显。小鼠体内环氧丁烯的估计最大代谢率(Vmax)仅为350 μmol·h⁻¹·kg⁻¹(大鼠:大于2600 μmol·h⁻¹·kg⁻¹)。在适用一级代谢的较低浓度范围内(高达约500 ppm),与大鼠相比,小鼠代谢环氧丁烯的速率更高(每千克体重的代谢清除率,小鼠:24900 ml·h⁻¹,大鼠:13400 ml·h⁻¹)。在这些条件下,小鼠体内环氧丁烯的稳态浓度约为大鼠的10倍。当小鼠暴露于高浓度丁二烯(大于2000 ppm;丁二烯代谢饱和的条件;密闭暴露系统)时,动物会呼出环氧丁烯,其在气相中的浓度随暴露时间增加。在约10 ppm的环氧丁烯浓度下可观察到急性毒性迹象。当大鼠在类似条件下暴露于丁二烯时,环氧丁烯浓度在约4 ppm时达到稳定水平。在这些条件下,小鼠肝脏中的非蛋白质巯基化合物几乎耗尽,而大鼠则不然。(摘要截断于250字)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验