Suppr超能文献

Hypertonic upregulation of amino acid transport system A in vascular smooth muscle cells.

作者信息

Chen J G, Klus L R, Steenbergen D K, Kempson S A

机构信息

Department of Physiology and Biophysics, Indiana University School of Medicine, Indianapolis 46202-5120.

出版信息

Am J Physiol. 1994 Aug;267(2 Pt 1):C529-36. doi: 10.1152/ajpcell.1994.267.2.C529.

Abstract

The A10 line of vascular smooth muscle cells has Na+ dependent transport systems for alanine, proline, and Pi, whereas uptake of leucine, myo-inositol and D-glucose is Na+ independent. When A10 cells were incubated for 4 h in medium made hypertonic by addition of sucrose, there was a marked increase in Na(+)-dependent transport of alanine and proline but no change in Na(+)-dependent Pi uptake or Na(+)-independent uptake of leucine and inositol. Intracellular alanine content was increased 61% by the hypertonic treatment. Other nonpenetrating solutes, such as cellobiose and mannitol, reproduced the effect of sucrose, but urea, a penetrating solute, did not. Studies with 2-(methylamino)-isobutyric acid revealed that the upregulation by hypertonicity involved only system A. Increases in alanine and proline uptake also occurred after incubating the cells in isotonic medium containing 0.1 mM ouabain, suggesting that an increase in intracellular Na+ may be part of the intracellular signal for upregulation of system A. Hypertonic upregulation of Na(+)-dependent alanine transport occurred also in primary cultures of vascular smooth muscle cells. The response was blocked by actinomycin D and cycloheximide, indicating that gene transcription and protein synthesis play important roles in the mechanism leading to increased alanine uptake. We conclude that vascular smooth muscle cells, during prolonged hypertonic stress, activate system A and accumulate specific neutral amino acids which may act as organic osmolytes to help maintain normal cell volume.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验