Suppr超能文献

在个人计算机上显示放射图像:图像处理与分析。

Displaying radiologic images on personal computers: image processing and analysis.

作者信息

Gillespy T, Rowberg A H

机构信息

Department of Radiology, University of Washington, Seattle 98195.

出版信息

J Digit Imaging. 1994 May;7(2):51-60. doi: 10.1007/BF03168422.

Abstract

This is the fourth article of our series for radiologists and imaging scientists on displaying, manipulating, and analyzing radiologic images on personal computers. Classic image processing is divided into point, area, frame, and geometric processes. Point processes change image pixel values based on the value of the pixel of interest. Histogram equalization adjusts the pixel values in the image based on the distribution of pixel values. Area processes change the pixel of interest based on the values of the surrounding pixels, known as the neighborhood. Area processes using a convolution kernel are often used as image filters. Common convolution kernels include low-frequency, high-frequency, and edge-enhancement filters. Edge enhancement can be performed with convolution kernels such as shift and difference, gradient-directional and Laplacian filters, or with nonlinear methods such as Sobel's algorithm. Frame processes mathematically combine two or more images, often for noise reduction and background subtraction. Geometric processes alter the location of pixels within the image, but usually not the pixel values. Common radiologic applications of image processing include window width and window level adjustments (point process), adaptive histogram equalization (area process), unsharp masking (area process), computed radiography image processing (combined area and point processes), digital subtraction angiography (frame and geometric processes), region of interest analysis (area process), and image rotation (geometric process). As digital imaging becomes more widespread, radiologists need to understand the image processing that is fundamental to these modalities.

摘要

这是我们为放射科医生和影像科学家撰写的关于在个人计算机上显示、处理和分析放射影像系列文章的第四篇。经典图像处理分为点处理、区域处理、帧处理和几何处理。点处理根据感兴趣像素的值改变图像像素值。直方图均衡化基于像素值的分布调整图像中的像素值。区域处理根据周围像素(即邻域)的值改变感兴趣像素。使用卷积核的区域处理通常用作图像滤波器。常见的卷积核包括低频、高频和边缘增强滤波器。边缘增强可以使用诸如移位和差分、梯度方向和拉普拉斯滤波器等卷积核来执行,也可以使用诸如索贝尔算法等非线性方法来执行。帧处理在数学上组合两个或更多图像,通常用于降噪和背景减法。几何处理改变图像内像素的位置,但通常不改变像素值。图像处理在放射学中的常见应用包括窗宽和窗位调整(点处理)、自适应直方图均衡化(区域处理)、锐化掩膜(区域处理)、计算机放射摄影图像处理(区域和点处理相结合)、数字减影血管造影(帧和几何处理)、感兴趣区域分析(区域处理)和图像旋转(几何处理)。随着数字成像越来越普及,放射科医生需要了解这些模式所基于的图像处理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验