Discrimination between citrulline and arginine transport in activated murine macrophages: inefficient synthesis of NO from recycling of citrulline to arginine.
作者信息
Baydoun A R, Bogle R G, Pearson J D, Mann G E
机构信息
Vascular Biology Research Centre, King's College, London.
The kinetics, specificity, pH- and Na(+)-dependency of L-citrulline transport were examined in unstimulated and lipopolysaccharide (LPS)-activated murine macrophage J774 cells. The dependency of nitric oxide production on extracellular arginine or citrulline was investigated in cells activated with LPS (1 microgram ml-1) for 24 h. 2. In unstimulated J774 cells, transport of citrulline was saturable (Kt = 0.16 mM and Vmax = 32 pmol micrograms-1 protein min-1), pH-insensitive and partially Na(+)-dependent. In contrast to arginine, transport of citrulline was unchanged in LPS-activated (1 microgram ml-1, 24 h) cells. 3. Kinetic inhibition experiments revealed that arginine was a relatively poor inhibitor of citrulline transport, whilst citrulline was a more potent inhibitor (Ki = 3.4 mM) of arginine transport but only in the presence of extracellular Na+. Neutral amino acids inhibited citrulline transport (Ki = 0.2-0.3 mM), but were poor inhibitors of arginine transport. 4. Activated J774 cells did not release nitrite in the absence of exogenous arginine. Addition of citrulline (0.01-10 mM), in the absence of exogenous arginine, could only partially restore the ability of cells to synthesize nitrite, which was abolished by 100 microM NG-nitro-L-arginine methyl ester or NG-iminoethyl-L-ornithine. 5. Intracellular metabolism of L-[14C]-citrulline to L-[14C]-arginine was detected in unstimulated J774 cells and was increased further in cells activated with LPS and interferon-gamma. 6. We conclude that J774 macrophage cells transport citrulline via a saturable but nonselective neutral carrier which is insensitive to induction by LPS. In contrast, transport of arginine via the cationic amino acid system y+ is induced in J774 cells activated with LPS.7. Our findings also confirm that citrulline can be recycled to arginine in activated J774 macrophage cells. Although this pathway provides a mechanism for enhanced arginine generation required for NO production under conditions of limited arginine availability, it cannot sustain maximal rates of NO synthesis.