Suppr超能文献

用于分析宫颈涂片增殖性(MIB-1阳性)细胞群的PAPNET系统。

PAPNET for analysis of proliferating (MIB-1 positive) cell populations in cervical smears.

作者信息

Boon M E, Kleinschmidt-Guy E D, Ouwerkerk-Noordam E

机构信息

Leiden Cytology and Pathology Laboratory, Leiden, The Netherlands.

出版信息

Eur J Morphol. 1994 Mar;32(1):78-85.

PMID:8086271
Abstract

In diagnostic tumor pathology, immunohistochemical detection of proliferating cell populations is increasingly used. With the event of microwave-antigen retrieval it has become possible to detect proliferating cells in cervical smears staining positive for MiB-1. We report that with the PAPNET system, using neural network computing, it is possible to collect from the smears the images with epithelial fragments containing positive nuclei. We used this system for quantification of staining results. Cases with carcinoma in situ contained many epithelial fragments having a large number of positive-staining nuclei and with labelling indices of 60 +/- 16. Dysplasias were often completely devoid of cells with positive nuclei. In addition, we could not detect differences between progressive and regressive dysplasias. Automatic prescreening of immunostained smears using PAPNET is useful when it is desired to quantify staining results.

摘要

在诊断性肿瘤病理学中,免疫组织化学检测增殖细胞群体的应用越来越广泛。随着微波抗原修复技术的出现,已能够在MiB-1染色呈阳性的宫颈涂片中检测到增殖细胞。我们报告,使用神经网络计算的PAPNET系统,可以从涂片中收集含有阳性细胞核的上皮碎片图像。我们用该系统对染色结果进行定量分析。原位癌病例含有许多上皮碎片,这些碎片中有大量阳性染色细胞核,标记指数为60±16。发育异常病例常常完全没有阳性细胞核的细胞。此外,我们未能检测到进行性和退行性发育异常之间的差异。当需要对免疫染色涂片的结果进行定量分析时,使用PAPNET对免疫染色涂片进行自动预筛查是有用的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验