Nani F K, Oğuztöreli M N
Department of Mathematics, University of Alberta, Edmonton, Canada.
IMA J Math Appl Med Biol. 1994;11(2):107-47. doi: 10.1093/imammb/11.2.107.
A mathematical model is developed to describe the process of adoptive cellular immunotherapy (ACI) using the scheme of Rosenberg and other investigators. The model exhibits the dynamics of tumour cells as well as the time evolution of the tumoricidal immunocytes, such as ex vivo interleukin-2 (IL-2) expanded natural killer (NK) cells, lymphokine activated killer (LAK) cells, tumour derived activated cells (TDAC), and interferon-gamma (IFN-gamma) activated killer monocytes (AKM). The model is described mathematically by a system of nonlinear functional-differential equations. Computer simulations based on the model equations are performed using parametric configurations analogous to the protocols used in the clinical trials. The model elucidates explicitly the effects of time delays, effector immunocyte-to-tumour cell ratio, tumour growth parameters, and other critical variables on the prognosis, and the therapeutic efficacy of adoptive cellular immunotherapy.
利用罗森伯格及其他研究者的方案,开发了一个数学模型来描述过继性细胞免疫疗法(ACI)的过程。该模型展示了肿瘤细胞的动态变化以及杀肿瘤免疫细胞的时间演变,如体外白细胞介素-2(IL-2)扩增的自然杀伤(NK)细胞、淋巴因子激活的杀伤细胞(LAK)、肿瘤衍生激活细胞(TDAC)和干扰素-γ(IFN-γ)激活的杀伤单核细胞(AKM)。该模型由一个非线性泛函微分方程组进行数学描述。基于模型方程的计算机模拟使用了与临床试验中所采用方案类似的参数配置来进行。该模型明确阐释了时间延迟、效应免疫细胞与肿瘤细胞比例、肿瘤生长参数以及其他关键变量对过继性细胞免疫疗法的预后和治疗效果的影响。