Ichai C, Fenouil E, Grimaud D
Département d'Anesthésie-Réanimation, Hôpital Saint-Roch, Nice.
Ann Fr Anesth Reanim. 1994;13(1):68-79. doi: 10.1016/S0750-7658(94)80189-4.
A modification of serum osmolarity induces always movements of water across cell membranes and therefore variations of cell volume of all tissues, including brain. To avoid a severe cell dehydration or hyperhydration, the organism has several regulation means called osmoregulation. Cerebral osmoregulation is essential as the brain is contained in a unexpandable box. In comparison with other organs, this phenomenon is complex and particular as: 1) cerebral volume consists of 3 sub spaces (intracellular, extracellular and cerebrospinal fluid [CSF]); 2) exists a blood-brain barrier (BBB) which behaves functionally as a semi-permeable membrane, essentially sensitive to osmolar disturbances. This brain volume regulation mechanism is working whatever the nature of the solutes initiating the osmotic deviation (sodium, glucose, mannitol...). Cerebral osmoregulation results from intracerebral osmolar modifications. Thus, every variation of plasma osmolarity elicits a similar variation of intracerebral osmolarity. This phenomenon results from modifications of the brain cell "protective" osmoles content. When the osmolar disturbance occurs quickly (in a few hours), cerebral osmoregulation is not complete. It results essentially from modifications of brain cell inorganic solutes content, i.e. electrolytes (Na, K, Cl) which originate from plasma, CSF and extracellular brain spaces uptake. When the osmolar disturbance is more progressive, cerebral osmoregulation is complete. The brain volume returns then to its initial value, by increasing its brain cell electrolytes, but above all organic "idiogenic" osmoles content. These idiogenic osmoles are identified as amino acids, polyols and trimethylamines. During treatment, the delayed normalization of brain osmolarity compared with plasma osmolarity prescribes a slow correction of the osmolar disturbance, as much as it is a chronic one.
血清渗透压的改变总会引起水跨细胞膜的移动,从而导致包括脑在内的所有组织的细胞体积发生变化。为避免细胞严重脱水或水合过度,机体有多种调节方式,称为渗透调节。由于脑位于一个不可扩张的颅腔内,脑的渗透调节至关重要。与其他器官相比,这种现象复杂且特殊,原因如下:1)脑体积由3个亚空间组成(细胞内、细胞外和脑脊液[CSF]);2)存在血脑屏障(BBB),其功能上相当于半透膜,对渗透压干扰基本敏感。无论引发渗透偏差的溶质性质如何(钠、葡萄糖、甘露醇……),这种脑体积调节机制都会起作用。脑的渗透调节源于脑内渗透压的改变。因此,血浆渗透压的每一次变化都会引起脑内渗透压的类似变化。这种现象是由于脑细胞“保护性”渗透溶质含量的改变所致。当渗透压干扰迅速发生(在数小时内)时,脑的渗透调节并不完全。这主要是由于脑细胞无机溶质含量的改变,即源于血浆、脑脊液和细胞外脑间隙摄取的电解质(钠、钾、氯)。当渗透压干扰较为渐进时,脑的渗透调节是完全的。此时脑体积会恢复到初始值,通过增加脑细胞电解质,但最重要的是增加有机“内原性”渗透溶质的含量。这些内原性渗透溶质被确定为氨基酸、多元醇和三甲胺。在治疗过程中,与血浆渗透压相比,脑渗透压的延迟恢复正常表明,对于慢性渗透压干扰,应缓慢纠正渗透压紊乱。