Prütz W A
Institut für Biophysik und Strahlenbiologie, Universität Freiburg, Bundesrepublik Deutschland.
Biochem J. 1994 Sep 1;302 ( Pt 2)(Pt 2):373-82. doi: 10.1042/bj3020373.
GSH interacts with Cu(II) in the vicinity of DNA (pH approximately 7) to form the DNA-Cu(I) complex, which can be quantified by characteristic absorption changes [e.g. delta epsilon 295 = 4516 cm-1.M-1 Cu(I)]. Under initial conditions of Cu(II)/GSH >> 1 and DNA(base)/Cu(II) >> 5, the stoichiometry is 1 DNA-Cu(I) per SH group (also for other thiols). Stopped-flow kinetics show that the complex is formed with half-lives of 1-30 s, depending on the environment, but independent of O2. DNA-Cu(I) generation is much slower, less efficient, and O2-dependent at Cu(II)/GSH < 1, or when GSH interacts with Cu(II) before the addition of DNA. Interaction of GSH with Cu(II) in the presence of DNA [at Cu(II)/GSH > 1] leads to DNA-associated transients, probably DNA-GS(-)-Cu(I); DNA-Cu(I) formation under these conditions is proposed to occur by ligand exchange: DNA-GS(-)-Cu(I)+Cu(II)<-->DNA-Cu(I)+GS(-)-Cu(II). There is no evidence for generation of free thiyl radicals (GS.) on reaction of Cu(II) with GSH. Formation of DNA-Cu(I) is, in our opinion, a primary step involved in DNA-strand cleavage by GSH in the presence of Cu(II) [Reed and Douglas (1991) Biochem. J. 275, 601-608]. In this context the question of the pro-oxidative and/or antioxidative activity of GSH, when combined with copper, is discussed. GSH also generates Cu(I) complexes with other nucleic acids. An updated order of affinities of various nucleic acids for Cu(I) is presented. Cu(I) exhibits a high preference for alternating dG-dC sequences and might even be a Z-DNA inducer. The poly(C)-Cu(I) complex seems to form a base-paired structure at pH approximately 7, as demonstrated by intercalation of ethidium bromide.
谷胱甘肽(GSH)在DNA附近(pH约为7)与铜(II)相互作用形成DNA - 铜(I)复合物,该复合物可通过特征吸收变化进行定量分析[例如,Δε295 = 4516 cm⁻¹·M⁻¹铜(I)]。在铜(II)/谷胱甘肽>> 1且DNA(碱基)/铜(II)>> 5的初始条件下,化学计量比为每个巯基对应1个DNA - 铜(I)(其他硫醇也是如此)。停流动力学表明,该复合物的形成半衰期为1 - 30秒,具体取决于环境,但与氧气无关。在铜(II)/谷胱甘肽<1时,或者当谷胱甘肽在添加DNA之前与铜(II)相互作用时,DNA - 铜(I)的生成要慢得多、效率更低且依赖于氧气。在DNA存在的情况下(铜(II)/谷胱甘肽> 1),谷胱甘肽与铜(II)的相互作用会导致与DNA相关的瞬态现象,可能是DNA - GS⁻ - 铜(I);在这些条件下,DNA - 铜(I)的形成被认为是通过配体交换发生的:DNA - GS⁻ - 铜(I) + 铜(II)⇌DNA - 铜(I) + GS⁻ - 铜(II)。没有证据表明铜(II)与谷胱甘肽反应会产生游离的硫自由基(GS·)。我们认为,DNA - 铜(I)的形成是谷胱甘肽在铜(II)存在下导致DNA链断裂的一个主要步骤[里德和道格拉斯(1991年),《生物化学杂志》275卷,601 - 608页]。在这种情况下,讨论了谷胱甘肽与铜结合时的促氧化和/或抗氧化活性问题。谷胱甘肽还会与其他核酸生成铜(I)复合物。给出了各种核酸对铜(I)亲和力的更新顺序。铜(I)对交替的dG - dC序列表现出高度偏好,甚至可能是一种Z - DNA诱导剂。如溴化乙锭的插入所示,聚(C) - 铜(I)复合物在pH约为7时似乎形成碱基配对结构。