Suppr超能文献

Alterations of cerebromicrovascular Na+,K(+)-ATPase activity due to fatty acids and acute hypertension.

作者信息

Caspers M L, Bussone M, Dow M J, Ulanski L J, Grammas P

机构信息

Department of Chemistry, University of Detroit Mercy, MI 48219-0900.

出版信息

Brain Res. 1993 Feb 5;602(2):215-20. doi: 10.1016/0006-8993(93)90685-g.

Abstract

Acute hypertension, induced in rats by intravenous injection of angiotensin II, previously has been shown to increase cerebrovascular permeability to macromolecules. The purpose of this study was to examine the effect of acute hypertension on Na+,K(+)-ATPase, the enzyme responsible for controlling ionic permeability of the cerebromicrovascular endothelium. The K(+)-dependent p-nitrophenylphosphatase activity of the cerebromicrovascular Na+,K(+)-ATPase was determined using microvessels prepared from hypertensive and normotensive rats. When compared to controls, a 70% decrease (P < 0.02) in the maximum rate (Vmax) of the Na+,K(+)-ATPase from hypertensive rats was evident with no change in the Michaelis constant (KM). In contrast, gamma-glutamyltranspeptidase, a marker enzyme for cerebral endothelial cells, was not significantly affected. Sodium arachidonate (1-100 microM) inhibited the phosphatase activity of the Na+,K(+)-ATPase in microvessels isolated from both normotensive and hypertensive rats in a dose-dependent manner. Furthermore, poly-unsaturated fatty acids (sodium linoleate and arachidonate) evoked the greatest inhibition of the enzyme, while sodium oleate and sodium palmitate inhibited the Na+,K(+)-ATPase to lesser extents. This regulation of enzyme activity by fatty acids was comparable in control and hypertensive groups. In summary, the data indicate that the cerebromicrovascular Na+,K(+)-ATPase was altered as a consequence of acute hypertension and that poly-unsaturated fatty acids can modulate this enzyme in microvessels derived from hypertensive or control rats.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验