Martin Y C, Bures M G, Danaher E A, DeLazzer J, Lico I, Pavlik P A
Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, IL 60064.
J Comput Aided Mol Des. 1993 Feb;7(1):83-102. doi: 10.1007/BF00141577.
In the absence of a 3D structure of the target biomolecule, to propose the 3D requirements for a small molecule to exhibit a particular bioactivity, one must supply both a bioactive conformation and a superposition rule for every active compound. Our strategy identifies both simultaneously. We first generate and optimize all low-energy conformations by any suitable method. For each conformation we then use ALADDIN to calculate the location of points to be considered as part of the superposition. These points include atoms in the molecule and projections from the molecule to hydrogen-bond donors and acceptors or charged groups in the binding site. These positions and the relative energy of each conformation are the input to our new program DISCO. It uses a clique-detection method to find superpositions that contain at least one conformation of each molecule and user-specified numbers of point types and chirality. DISCO is fast; for example, it takes about 1 min CPU to propose pharmacophores from 21 conformations of seven molecules. We typically run DISCO several times to compare alternative pharmacophore maps. For D2 dopamine agonists DISCO shows that the newer 2-aminothiazoles fit the traditional pharmacophore. Using site points correctly identifies the bioactive enantiomers of indoles to compare with catechols whereas using only ligand points leads to selecting the inactive enantiomer for the pharmacophore map. In addition, DISCO reproduces pharmacophore maps of benzodiazepines in the literature and proposes subtle improvements. Our experience suggests that clique-detection methods will find many applications in computational chemistry and computer-assisted molecular design.
在缺乏目标生物分子三维结构的情况下,要提出小分子展现特定生物活性的三维要求,必须为每个活性化合物提供一个生物活性构象和一个叠加规则。我们的策略能同时确定这两者。我们首先通过任何合适的方法生成并优化所有低能量构象。然后对于每个构象,我们使用ALADDIN计算要视为叠加一部分的点的位置。这些点包括分子中的原子以及从分子到结合位点中的氢键供体、受体或带电基团的投影。这些位置以及每个构象的相对能量是我们新程序DISCO的输入。它使用团簇检测方法来找到包含每个分子至少一个构象以及用户指定数量的点类型和手性的叠加。DISCO速度很快;例如,从七个分子的21个构象中提出药效团大约需要1分钟的CPU时间。我们通常运行DISCO几次以比较不同的药效团图谱。对于D2多巴胺激动剂,DISCO表明较新的2-氨基噻唑符合传统药效团。正确使用位点能识别吲哚的生物活性对映体以便与儿茶酚进行比较,而仅使用配体点会导致在药效团图谱中选择无活性的对映体。此外,DISCO重现了文献中苯二氮䓬类药物的药效团图谱并提出了细微改进。我们的经验表明团簇检测方法将在计算化学和计算机辅助分子设计中有许多应用。