el-Waer A F, Smith K, McKie J H, Benson T, Fairlamb A H, Douglas K T
Department of Pharmacy, University of Manchester, UK.
Biochim Biophys Acta. 1993 Nov 10;1203(1):93-8. doi: 10.1016/0167-4838(93)90040-x.
Trypanothione reductase, central to the redox defense systems of parasitic trypanosomes and leishmanias, is sufficiently different in its substrate-specificity from mammalian glutathione reductase to represent an attractive target for chemotherapeutic intervention. Previous studies of the physiological substrates trypanothione (N1,N8-bis(glutathionyl)spermidine) and N1-glutathionylspermidine disulphide established that the spermidine moiety of these substrates can be replaced by the 3-dimethyl-propylamide group (N1-glutathionyl-N3-dimethyl-propylamide). With this modification, the specificity for the gamma-glutamyl moiety of the substrate was examined. Kinetic analysis of a series of substrate analogues indicated that neither the alpha-carboxylate or alpha-amino functions of the L-gamma-glutamyl group is essential for recognition, since this group could be replaced by uncharged benzyloxycarbonyl or t-butyloxycarbonyl groups with relative catalytic efficiencies (kcat/Km) of 58 and 11%, respectively, of N1-glutathionyl-N3-dimethylpropylaminedisulphide. Other substitutions are less well tolerated (e.g., beta-L-aspartyl or aminobutyryl) or not at all (e.g., glutaryl). These findings are discussed in relation to the structural model of TR from Trypanosoma congolense. The successful structural replacements achieved have potential application for drug delivery.
锥虫硫醇还原酶是寄生锥虫和利什曼原虫氧化还原防御系统的核心,其底物特异性与哺乳动物谷胱甘肽还原酶有足够差异,是化疗干预的一个有吸引力的靶点。此前对生理底物锥虫硫醇(N1,N8-双(谷胱甘肽基)亚精胺)和N1-谷胱甘肽基亚精胺二硫化物的研究表明,这些底物的亚精胺部分可被3-二甲基丙酰胺基团(N1-谷胱甘肽基-N3-二甲基丙酰胺)取代。通过这种修饰,研究了底物对γ-谷氨酰部分的特异性。对一系列底物类似物的动力学分析表明,L-γ-谷氨酰基团的α-羧基或α-氨基功能对于识别并非必不可少,因为该基团可被不带电荷的苄氧羰基或叔丁氧羰基取代,其相对催化效率(kcat/Km)分别为N1-谷胱甘肽基-N3-二甲基丙胺二硫化物的58%和11%。其他取代则耐受性较差(例如β-L-天冬氨酰或氨基丁酰)或完全不耐受(例如戊二酰)。结合刚果锥虫TR的结构模型对这些发现进行了讨论。所实现的成功结构取代在药物递送方面具有潜在应用。