Suppr超能文献

细胞内钙和环磷酸腺苷调节硬骨鱼红色素细胞中的色素定向移动。

Intracellular calcium and cAMP regulate directional pigment movements in teleost erythrophores.

作者信息

Kotz K J, McNiven M A

机构信息

Department of Molecular Neuroscience, Mayo Clinic, Rochester, Minnesota 55905.

出版信息

J Cell Biol. 1994 Feb;124(4):463-74. doi: 10.1083/jcb.124.4.463.

Abstract

Teleost pigment cells (erythrophores and melanophores) are useful models for studying the regulation of rapid, microtubule-dependent organelle transport. Previous studies suggest that melanophores regulate the direction of pigment movements via changes in intracellular cAMP (Rozdzial and Haimo, 1986a; Sammak et al., 1992), whereas erythrophores may use calcium- (Ca(2+)-) based regulation (Luby-Phelps and Porter, 1982; McNiven and Ward, 1988). Despite these observations, there have been no direct measurements in intact erythrophores or any cell type correlating changes of intracellular free Ca2+ ([Ca2+]i) with organelle movements. Here we demonstrate that extracellular Ca2+ is necessary and that a Ca2+ influx via microinjection is sufficient to induce pigment aggregation in erythrophores, but not melanophores of squirrel fish. Using the Ca(2+)-sensitive indicator, Fura-2, we demonstrate that [Ca2+]i rises dramatically concomitant with aggregation of pigment granules in erythrophores, but not melanophores. In addition, we find that an erythrophore stimulated to aggregate pigment will immediately transmit a rise in [Ca2+]i to neighboring cells, suggesting that these cells are electrically coupled. Surprisingly, we find that a fall in [Ca2+]i is not sufficient to induce pigment dispersion in erythrophores, contrary to the findings obtained with the ionophore and lysed-cell models (Luby-Phelps and Porter, 1982; McNiven and Ward, 1988). We find that a rise in intracellular cAMP ([cAMP]i) induces pigment dispersion, and that this dispersive stimulus can be overridden by an aggregation stimulus, suggesting that both high [cAMP]i and low [Ca2+]i are necessary to produce pigment dispersion in erythrophores.

摘要

硬骨鱼色素细胞(红色素细胞和黑色素细胞)是研究快速的、微管依赖性细胞器运输调控的有用模型。先前的研究表明,黑色素细胞通过细胞内cAMP的变化来调节色素移动的方向(罗兹戴尔和海莫,1986a;萨马克等人,1992),而红色素细胞可能利用基于钙(Ca(2+))的调控(卢比-费尔普斯和波特,1982;麦克尼文和沃德,1988)。尽管有这些观察结果,但尚未在完整的红色素细胞或任何细胞类型中进行直接测量,以关联细胞内游离Ca2+([Ca2+]i)的变化与细胞器移动。在这里,我们证明细胞外Ca2+是必需的,并且通过显微注射的Ca2+内流足以诱导红色素细胞中的色素聚集,但对松鼠鱼的黑色素细胞则无效。使用Ca(2+)敏感指示剂Fura-2,我们证明红色素细胞中[Ca2+]i随着色素颗粒的聚集而急剧升高,但黑色素细胞中并非如此。此外,我们发现受到刺激而聚集色素的红色素细胞会立即将[Ca2+]i的升高传递给相邻细胞,这表明这些细胞是电耦合的。令人惊讶的是,我们发现与离子载体和裂解细胞模型的结果相反(卢比-费尔普斯和波特,1982;麦克尼文和沃德,1988),[Ca2+]i的下降不足以诱导红色素细胞中的色素分散。我们发现细胞内cAMP([cAMP]i)的升高会诱导色素分散,并且这种分散刺激可以被聚集刺激所抵消,这表明高[cAMP]i和低[Ca2+]i对于在红色素细胞中产生色素分散都是必需的。

相似文献

1
细胞内钙和环磷酸腺苷调节硬骨鱼红色素细胞中的色素定向移动。
J Cell Biol. 1994 Feb;124(4):463-74. doi: 10.1083/jcb.124.4.463.
3
Control of organelle transport in melanophores: regulation of Ca2+ and cAMP levels.
Cell Motil Cytoskeleton. 1992;22(3):175-84. doi: 10.1002/cm.970220305.
4
促黑素细胞激素对鱼类色素细胞色素聚集和分散作用的比较分析。
Comp Biochem Physiol C Toxicol Pharmacol. 2001 Jun;129(2):75-84. doi: 10.1016/s1532-0456(01)00187-9.
6
孔雀鱼(虹鳉)培养色素细胞的有丝分裂和色素转运活性。
Comp Biochem Physiol C Comp Pharmacol Toxicol. 1984;78(1):21-9. doi: 10.1016/0742-8413(84)90041-0.
7
尼罗罗非鱼红色素细胞中可能由视觉色素介导的光反应信号通路。
Pigment Cell Res. 2005 Oct;18(5):360-9. doi: 10.1111/j.1600-0749.2005.00267.x.
8
Pigment migration in fish erythrophores is controlled by alpha 2-adrenoceptors.
Comp Biochem Physiol C Comp Pharmacol Toxicol. 1988;91(2):513-6. doi: 10.1016/0742-8413(88)90070-9.
9
MCH-induced pigment aggregation in teleost melanophores is associated with a cAMP reduction.
Life Sci. 1991;48(21):2043-6. doi: 10.1016/0024-3205(91)90160-d.
10
淡水虾红色卵巢色素细胞中色素转运的钙依赖性。
Biol Bull. 2000 Jun;198(3):357-66. doi: 10.2307/1542691.

引用本文的文献

1
常染色体隐性 Bestrophinopathy 的多模态影像学分析:病例系列。
Medicine (Baltimore). 2024 Jul 19;103(29):e38853. doi: 10.1097/MD.0000000000038853.
2
从眼球外光感受到色素运动调控:灯笼鱼发光的新控制机制。
Sci Rep. 2020 Jun 23;10(1):10195. doi: 10.1038/s41598-020-67287-w.
3
脊椎动物色素细胞中色素运动的生化调节:生理颜色变化机制综述
Curr Zool. 2016 Jun;62(3):237-252. doi: 10.1093/cz/zow051. Epub 2016 Apr 19.
4
对虾 Fenneropenaeus merguiensis 体色形成的分子特征。
PLoS One. 2013;8(2):e56920. doi: 10.1371/journal.pone.0056920. Epub 2013 Feb 18.
5
CA1 突触中长时程增强和长时程压抑的相互作用:时间约束、功能区隔和蛋白质合成。
PLoS One. 2012;7(1):e29865. doi: 10.1371/journal.pone.0029865. Epub 2012 Jan 17.
9
动力蛋白与膜结合的细胞周期调控调节基于微管的细胞器运输。
J Cell Biol. 1996 May;133(3):585-93. doi: 10.1083/jcb.133.3.585.

本文引用的文献

1
体内神经元驱动蛋白重链和轻链的磷酸化
J Neurochem. 1993 Jun;60(6):2265-75. doi: 10.1111/j.1471-4159.1993.tb03513.x.
3
含有不纯蛋白质的纯净思想:细胞器运动的透化细胞模型
Bioessays. 1993 Nov;15(11):715-22. doi: 10.1002/bies.950151104.
4
6
钙诱导再激活的海胆精子进入静止状态。
J Cell Biol. 1980 Jan;84(1):13-27. doi: 10.1083/jcb.84.1.13.
8
色素细胞——用于研究细胞基质易位的模型
J Cell Biol. 1984 Jul;99(1 Pt 2):152s-158s. doi: 10.1083/jcb.99.1.152s.
9
动力蛋白活性抑制剂可阻断红色素细胞内的物质运输。
Nature. 1982 Feb 25;295(5851):701-3. doi: 10.1038/295701a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验