Suppr超能文献

甲萘醌引起的氧化应激会影响细胞内铜和铁的稳态。

Oxidative stress by menadione affects cellular copper and iron homeostasis.

作者信息

Calderaro M, Martins E A, Meneghini R

机构信息

Department of Biochemistry, University of Sao Paulo, Brazil.

出版信息

Mol Cell Biochem. 1993 Sep 8;126(1):17-23. doi: 10.1007/BF01772204.

Abstract

Menadione produces DNA strand breaks (DNA sb) in cultured Chinese hamster fibroblasts which are, to a great extent, mediated by OH radical. A reasonable hypothesis is that H2O2, a product of menadione metabolism, reacts with nuclear iron and produces OH radical in situ. Consistent with that, 1,10-phenanthroline (PHEN) prevents menadione-induced DNA sb at low (< 200 microM) concentrations of the chelator. However, at higher PHEN concentrations, the effect is reversed and an enhancement of DNA sb is observed. The PHEN-induced enhancement of DNA sb becomes more evident at high (> 60 microM) menadione concentrations and is strongly prevented by neocuproine (NEO), an efficient copper chelator. However, NEO offers only a slight protection against DNA sb caused by menadione alone. The results are consistent with the following events: (i) the products of menadione metabolism causes copper ion release from some cellular compartment; (ii) in the presence of PHEN, a Cu(PHEN)2 complex is formed; (iii) the Cu(PHEN)2 complex is known to be very clastogenic, inducing DNA damage in a reducing environment. Evidence is also presented that menadione metabolism causes an increase in intracellular chelatable iron: in the presence of a constant 2,2'-dipyridyl concentration, the DNA sb produced by increasing concentrations of menadione become progressively less susceptible to inhibition by the chelator. Therefore the DNA damage originated from menadione metabolism seems to be caused by two conjugated and synergistic events, viz., the production of reactive oxygen species and the release of copper and iron from a cellular storage site into a 'free' form pool, capable of catalyzing DNA damaging reactions.

摘要

甲萘醌在培养的中国仓鼠成纤维细胞中会产生DNA链断裂(DNA sb),这种断裂在很大程度上是由羟基自由基介导的。一个合理的假设是,甲萘醌代谢产物过氧化氢与核内铁反应并在原位产生羟基自由基。与此相符的是,在螯合剂浓度较低(<200微摩尔)时,1,10 - 菲咯啉(PHEN)可防止甲萘醌诱导的DNA sb。然而,在较高的PHEN浓度下,这种作用会逆转,并且会观察到DNA sb增强。在高浓度(>60微摩尔)的甲萘醌存在时,PHEN诱导的DNA sb增强变得更加明显,并且高效铜螯合剂新铜试剂(NEO)可强烈阻止这种增强。然而,NEO对甲萘醌单独引起的DNA sb仅提供轻微保护。结果与以下事件一致:(i)甲萘醌代谢产物导致铜离子从某些细胞区室释放;(ii)在PHEN存在下,形成Cu(PHEN)2复合物;(iii)已知Cu(PHEN)2复合物具有很强的致断裂性,在还原环境中诱导DNA损伤。还有证据表明甲萘醌代谢导致细胞内可螯合铁增加:在2,2'-联吡啶浓度恒定的情况下,随着甲萘醌浓度增加产生的DNA sb对螯合剂抑制的敏感性逐渐降低。因此,源自甲萘醌代谢的DNA损伤似乎是由两个共轭且协同的事件引起的,即活性氧的产生以及铜和铁从细胞储存部位释放到能够催化DNA损伤反应的“游离”形式库中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验