Pyun H J, Wagschal K C, Jung D I, Coates R M, Croteau R
Department of Chemistry, University of Illinois, Urbana 61801.
Arch Biochem Biophys. 1994 Feb 1;308(2):488-96. doi: 10.1006/abbi.1994.1069.
The three pinene synthases (cyclases) from common sage (Salvia officinalis) catalyze the conversion of geranyl pyrophosphate to the bicyclic olefins (+)-alpha-pinene and (+)-camphene (cyclase I), (-)-alpha-pinene, (-)-beta-pinene, and (-)-camphene (cyclase II), and (+)-alpha-pinene and (+)-beta-pinene (cyclase III), in addition to smaller amounts of monocyclic and acyclic monoterpene olefins. (1R)-4-2H1- and (1S)-4-2H1-labeled geranyl pyrophosphates were prepared and used to examine the stereochemistry of the C3-proton elimination from the pinyl cation intermediates in the formation of the alpha-pinene enantiomers. Mass spectrometric analysis of the biosynthetic products derived from the chirally deuterated substrates revealed that cyclase I and cyclase III removed the C4-proR-hydrogen of the substrate (C3 proton trans to the dimethyl bridge of the pinyl nucleus) with a stereoselectivity exceeding 94% in the formation of (+)-alpha-pinene. Similarly, cyclase II removed the C4-proS-hydrogen of the substrate (C3-trans proton of the corresponding pinyl cation) with a stereoselectivity exceeding 78% in the formation of (-)-alpha-pinene. The stereoselectivity of these C3-axial hydrogen eliminations is rationalized on the basis of a stereochemical model for the electrophilic isomerization-cyclization reaction sequence catalyzed by the pinene cyclases. The changes in the overall rates of olefin biosynthesis by these enzymes and in the product ratios resulting from deuterium substitution also permitted confirmation of isotopically sensitive branching in pinene biosynthesis and allowed the observation of primary kinetic isotope effects in isolation.
来自鼠尾草(Salvia officinalis)的三种蒎烯合酶(环化酶)催化香叶基焦磷酸转化为双环烯烃(+)-α-蒎烯和(+)-蒈烯(环化酶I)、(-)-α-蒎烯、(-)-β-蒎烯和(-)-蒈烯(环化酶II)以及(+)-α-蒎烯和(+)-β-蒎烯(环化酶III),此外还生成少量的单环和无环单萜烯烃。制备了(1R)-4-2H1-和(1S)-4-2H1-标记的香叶基焦磷酸,并用于研究在α-蒎烯对映体形成过程中,从蒎基阳离子中间体消除C3-质子的立体化学。对手性氘代底物衍生的生物合成产物进行质谱分析表明,在生成(+)-α-蒎烯的过程中,环化酶I和环化酶III以超过94%的立体选择性消除底物的C4-proR-氢(C3质子与蒎基核的二甲基桥反式)。同样,在生成(-)-α-蒎烯的过程中,环化酶II以超过78%的立体选择性消除底物的C4-proS-氢(相应蒎基阳离子的C3-反式质子)。基于蒎烯环化酶催化的亲电异构化-环化反应序列的立体化学模型,对这些C3-轴向氢消除的立体选择性进行了合理化解释。这些酶催化的烯烃生物合成总速率的变化以及氘取代导致的产物比例变化,也证实了蒎烯生物合成中同位素敏感分支的存在,并使得能够单独观察初级动力学同位素效应。