Suppr超能文献

DNA adduct formation by tamoxifen with rat and human liver microsomal activation systems.

作者信息

Pathak D N, Bodell W J

机构信息

Brain Tumor Research Center, School of Medicine, University of California, San Francisco 94143-0806.

出版信息

Carcinogenesis. 1994 Mar;15(3):529-32. doi: 10.1093/carcin/15.3.529.

Abstract

Using microsomal preparations from rat and human liver, we investigated the activation of the anti-estrogen compound tamoxifen (TMX) to form DNA adducts. Pretreatment of rats with phenobarbital increased DNA adduct formation by microsomal activation of TMX 3- to 6-fold, depending on the cofactors used. When reduced nicotinamide-adenine dinucleotide phosphate (NADPH) was used as a cofactor in human and rat microsomal activation systems, the relative DNA adduct levels were 2.9 and 5.2 x 10(-8) respectively and 1-3 TMX-DNA adducts were detected by 32P-postlabeling; DNA adduct 1 was the same in both microsomal systems. When cumene hydroperoxide (CuOOH) was used as a cofactor, activation of TMX produced four major DNA adducts and several minor DNA adducts in both rat and human liver microsomes; the relative adduct levels were 11.1 and 23.1 x 10(-8) respectively. TMX-DNA adducts 1, 4, 5 and 6 were similar in both human and rat microsomal systems with CuOOH as the cofactor. The TMX-DNA adducts formed with NADPH as the cofactor were clearly different from those formed with CuOOH as the cofactor, which implies that the metabolites leading to the individual DNA adducts were different. Addition of a P450 inhibitor, either n-octylamine or alpha-naphthylisothiocyanate, to the activation system reduced adduct formation by 70-93%. We propose that the TMX-DNA adducts formed with NADPH as the cofactor result from P450 acting as a mono-oxygenase, whereas the adducts formed with CuOOH as the cofactor result from P450 acting as a peroxidase. Our findings suggest that further studies may be required to establish the safety of TMX treatment of women for purposes other than chemotherapy.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验