Suppr超能文献

哺乳动物含黄素单加氧酶:分子特征与表达调控

The mammalian flavin-containing monooxygenases: molecular characterization and regulation of expression.

作者信息

Hines R N, Cashman J R, Philpot R M, Williams D E, Ziegler D M

机构信息

Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201.

出版信息

Toxicol Appl Pharmacol. 1994 Mar;125(1):1-6. doi: 10.1006/taap.1994.1042.

Abstract

The flavin-containing monooxygenase (FMO) has been characterized in several mammalian species, including human. The FMO forms a stable NADP(H)- and oxygen-dependent 4 alpha-hydroperoxy flavin enzyme intermediate in the absence of an oxygenatable substrate. As such, substrate specificity appears to be controlled by access to this stabilized intermediate, resulting in this enzyme's ability to metabolize a wide variety of xenobiotics. These include tertiary and secondary alkyl- and arylamines, many hydrazines, thiocarbamides, thioamides, sulfides, disulfides, thiols, and other soft nucleophiles. Although some of these compounds are oxidized to less active derivatives, several examples of metabolic activation to potentially toxic intermediates also exist. Mercapto-pyrimidines and thiocarbamides, for example, appear to be activated predominantly by FMO. Thus, this enzyme system may play an important role in the early steps of chemical toxicity. Often, the contribution of FMO to the metabolism of a given compound can be assessed by its unique stereoselectivity relative to other oxygenases. For example, the cytochromes P450 oxidize (S)-nicotine to a mixture of cis- and trans-N-1'-oxides. In contrast, (S)-nicotine is oxidized by human FMO3 exclusively to the trans-N-1'-oxide. With the purification and cloning of FMO from multiple tissues and species it became apparent that more than one FMO exists. Further, there are considerable tissue- and species-specific differences in FMO expression that likely contribute to observed differences in detoxication competency and toxicant susceptibility.

摘要

含黄素单加氧酶(FMO)已在包括人类在内的多种哺乳动物物种中得到表征。在没有可氧化底物的情况下,FMO会形成一种稳定的、依赖于NADP(H)和氧气的4α-氢过氧黄素酶中间体。因此,底物特异性似乎是由对这种稳定中间体的可及性控制的,这导致该酶能够代谢多种外源性物质。这些物质包括叔胺、仲胺、烷基胺和芳基胺、许多肼、硫脲、硫代酰胺、硫化物、二硫化物、硫醇和其他软亲核试剂。虽然其中一些化合物被氧化为活性较低的衍生物,但也存在一些代谢活化为潜在毒性中间体的例子。例如,巯基嘧啶和硫脲似乎主要由FMO激活。因此,该酶系统可能在化学毒性的早期阶段发挥重要作用。通常,可以通过其相对于其他氧化酶的独特立体选择性来评估FMO对给定化合物代谢的贡献。例如,细胞色素P450将(S)-尼古丁氧化为顺式和反式-N-1'-氧化物的混合物。相比之下,人FMO3将(S)-尼古丁仅氧化为反式-N-1'-氧化物。随着从多个组织和物种中纯化和克隆FMO,很明显存在不止一种FMO。此外,FMO表达存在相当大的组织和物种特异性差异,这可能导致观察到的解毒能力和毒物易感性差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验