Suppr超能文献

Conformational analysis of free and Ca(2+)-bound forms of verapamil and methoxyverapamil.

作者信息

Zhorov B S, Ananthanarayanan V S

机构信息

Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada.

出版信息

J Biomol Struct Dyn. 1993 Dec;11(3):529-40. doi: 10.1080/07391102.1993.10508013.

Abstract

In a recent experimental study (Tetreault, S. and Ananthanarayanan, V.S. (1993) J. Med. Chem. 36, 1324-1332) we showed that verapamil can bind Ca2+ in a nonpolar medium to form 1:1 and 2:1 drug:Ca2+ complexes and proposed that such complexes may represent the bioactive form of the drug. A similar suggestion has also been made earlier from theoretical considerations of the geometry of the drug (Zhorov, B. and Govyrin, V. (1983), Dokl.Akad.Nauk SSSR 273, 497-501). In order to fully understand the nature of the drug-Ca2+ complex, we present in this paper a systematic conformational analysis of the protonated and neutral forms of verapamil and one of its potent analogues, methoxyverapamil (D600). For each form of verapamil and D600, the energies and generalized coordinates of all minimum-energy conformations (MECs) with the energy less than 5 kcal/mol above the global minimum have been accumulated and sorted in the order of increasing energies. A protocol was then used to search in the files MECs meeting a set of geometrical criteria and to sum up their populations. The geometrical criteria involved the predisposition of the oxygen and nitrogen atoms of the drug molecule to form bi- tri- and tetradentate complexes with Ca2+. Use of these criteria demonstrated that both verapamil and D600 have several low-energy structural patterns that are predisposed for bi- and polydentate chelation of Ca2+. Models of various types of 1:1 drug:Ca2+ complexes as well as two models of 2:1 drug:Ca2+ "sandwich" complex were obtained. Such models may be biologically relevant in understanding the nature of the ternary complex formed by the drug, Ca2+ and the calcium channel.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验