Suppr超能文献

Membrane stretch directly activates large conductance Ca(2+)-activated K+ channels in mesenteric artery smooth muscle cells.

作者信息

Dopico A M, Kirber M T, Singer J J, Walsh J V

机构信息

University of Massachusetts Medical Center, Department of Physiology, Worcester 01655.

出版信息

Am J Hypertens. 1994 Jan;7(1):82-9. doi: 10.1093/ajh/7.1.82.

Abstract

Large-conductance, Ca(2+)-activated K+ channels were identified in single smooth muscle cells freshly isolated from rabbit superior mesenteric artery. They typically showed a reversal potential close to 0 mV in excised, inside-out patches in symmetric 130 mmol/L [K+] with a unitary conductance of 260 pS, and increased activity at more positive potentials and/or when [Ca2+] was raised at the cytosolic surface of the membrane. Both in cell-attached and in excised, inside-out configurations, stretching the membrane patch by applying suction to the back of the patch pipette increased the activity of these channels without changing either the unitary conductance or the voltage sensitivity of the channel. Stretch activation was repeatedly seen in inside-out patches when both surfaces were bathed with a 0 Ca2+ solution containing 2 or 5 mmol/L EGTA to chelate trace amounts of Ca2+, making it highly improbable that stretch activation could be secondary to a stretch-induced flux of Ca2+. Consequently, stretch activation of large-conductance, Ca(2+)-activated K+ channels in mesenteric artery smooth muscle cells seems to be due to a direct effect of stretch on the channel itself or on some closely associated, membrane-bound entity.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验