Frech M, Darden T A, Pedersen L G, Foley C K, Charifson P S, Anderson M W, Wittinghofer A
Institute de Pharmacologie Moleculaire et Cellulaire, Centre National de la Recherche Scientifique, Valbonne, France.
Biochemistry. 1994 Mar 22;33(11):3237-44. doi: 10.1021/bi00177a014.
The active GTP-bound form of p21ras is converted to the biologically inactive GDP-bound form by enzymatic hydrolysis and this function serves to regulate the wild-type ras protein. The side chain of the amino acid at position 61 may play a key role in this hydrolysis of GTP by p21. Experimental studies that define properties of the Q61E mutant of p21H-ras are presented along with supporting molecular dynamics simulations. We find that under saturating concentrations of GTP the Q61E mutant of p21H-ras has a 20-fold greater rate of intrinsic hydrolysis (kcat = 0.57 min-1) than the wild type. The affinity of the Q61E variant for GTP (Kd = 115 microM) is much lower than that of the wild type. GTPase activating protein does not activate the variant. From molecular dynamics simulations, we find that both the wild type and Q61E mutant have the residue 61 side chain in transient contact with a water molecule that is well-positioned for hydrolytic attack on the gamma phosphate. Thr-35 also is found to form a transient hydrogen bond with this critical water. These elements may define the catalytic complex for hydrolysis of the GTP [Pai et al. (1990) EMBO J. 9, 2351]. Similarly, the G12P mutant, which also has an intrinsic hydrolysis rate similar to the wild type, is found to form the same complex in simulation. In contrast, molecular dynamics analysis of the mutants G12R, G12V, and Q61L, which have much lower intrinsic rates than the wild-type p21, do not show this complex.(ABSTRACT TRUNCATED AT 250 WORDS)
p21ras的活性GTP结合形式通过酶促水解转化为生物学上无活性的GDP结合形式,该功能用于调节野生型ras蛋白。第61位氨基酸的侧链可能在p21对GTP的这种水解中起关键作用。本文介绍了定义p21H-ras的Q61E突变体特性的实验研究,并辅以分子动力学模拟。我们发现,在GTP饱和浓度下,p21H-ras的Q61E突变体的内在水解速率(kcat = 0.57 min-1)比野生型高20倍。Q61E变体对GTP的亲和力(Kd = 115 microM)远低于野生型。GTPase激活蛋白不能激活该变体。从分子动力学模拟中,我们发现野生型和Q61E突变体的第61位残基侧链都与一个水分子短暂接触,该水分子位置合适,可对γ磷酸进行水解攻击。还发现Thr-35与这个关键水分子形成短暂的氢键。这些元素可能定义了GTP水解的催化复合物[Pai等人(1990年),《欧洲分子生物学组织杂志》9,2351]。同样,内在水解速率与野生型相似的G12P突变体在模拟中也形成了相同的复合物。相比之下,内在速率比野生型p21低得多的G12R、G12V和Q61L突变体的分子动力学分析未显示出这种复合物。(摘要截短于250字)