Inglefield J R, Schwarzkopf S B, Kellogg C K
Department of Neurobiology and Anatomy, University of Rochester, NY 14627.
Brain Res. 1994 Jan 7;633(1-2):151-61. doi: 10.1016/0006-8993(94)91534-2.
The dorsomedial hypothalamus is important for regulation of cardiovascular responses associated with emotional arousal. This region has also been identified as a component of neural circuitry involved in fear/anxiety, yet clear evidence as to the effects of lesioning on stress-related behaviors is missing. In this study, we lesioned the dorsomedial hypothalamic region with the neurotoxin, ibotenic acid (IBO; 2.0 micrograms in 0.2 microliter), and studied the impact on spontaneous and unlearned behavioral responses to stressors. In the open field test, we observed non-generalized increases in motility parameters in the IBO rats with the differences occurring in the latter two-thirds of the test. In the elevated plus-maze, the IBO rats displayed a classic anxiolytic response with a greater proportion of entries into (and greater time spent in) the open arms of the maze. In the environment-specific social interaction (SI) test, the IBO rats showed a normal familiar/unfamiliar environment discrimination with respect to Total SI; however, the composition of the behaviors ('curiosity' vs. physical contact) by the IBO rats was markedly altered, with there being a 2-fold increase in non-violent physical interactions. Additionally, the differences in these traditional indices of anxiety were associated with lesioned animals exhibiting greater acoustic startle responsiveness than controls as a function of prepulse intensity. Overall, the results following IBO lesions indicate an altered responsiveness to sudden stressors, particularly as relates to novelty or exploration-oriented behaviors. The hypothalamic lesion may, therefore, have resulted in a disinhibition of normally suppressed responding to innate fear or challenging stimuli. This study contributes to those that have begun to define neural interactions that are essential for integrated stress responses.