Suppr超能文献

Reactive mononuclear phagocytes release neurotoxins after ischemic and traumatic injury to the central nervous system.

作者信息

Giulian D, Corpuz M, Chapman S, Mansouri M, Robertson C

机构信息

Department of Neurology, Baylor College of Medicine, Houston, TX 77030.

出版信息

J Neurosci Res. 1993 Dec 15;36(6):681-93. doi: 10.1002/jnr.490360609.

Abstract

Reactive microglia and invading macrophages, which appear in brain damaged by stroke or trauma, secrete neuron-killing factors. This release of cytotoxic substances is a delayed process and is not detected until inflammatory cells reach a peak of reactivity by the second day after injury. Proximity to the site of injury and density of mononuclear phagocytes determine in part the amount of neurotoxic activity released by injured tissues. Moreover, drugs that suppress the accumulation of reactive microglia and macrophages also reduce tissue production of neuron poisons. Neurotoxins released by brain inflammatory cells or extracted directly from inflamed tissues are heat-stable, protease-resistant molecules < 500 daltons with actions blocked by N-methyl-D-aspartate (NMDA) receptor antagonists. These molecules are distinguished from free radical intermediates, bind to cation exchange resins, lack carboxyl moieties, and are separated from excitatory amino acids including glutamate or aspartate and from the NMDA receptor-mediated toxin quinolinic acid by ion exchange and reverse phase chromatography. Our data suggest that an unrecognized class of neuron-killing molecules produced by inflammatory cells mediate the delayed neuronal loss associated with stroke and trauma.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验