Bikker J A, Kubanek J, Weaver D F
Department of Chemistry, Queen's University at Kingston, Ontario, Canada.
Epilepsia. 1994 Mar-Apr;35(2):411-25. doi: 10.1111/j.1528-1157.1994.tb02454.x.
We report the first large-scale systematic quantitative structure-activity relationship (QSAR) study of barbiturates, correlating molecular structures with anticonvulsant activity. To achieve this QSAR study, we devised a four-step strategy. In step 1, an optimal quantum mechanical technique for determining the geometry and shape (conformation) of barbiturates was ascertained; this is the AM1 semiempirical molecular orbital method. In step 2, the AM1 method was used to optimize the structures and molecular properties of 48 barbiturates with varying anticonvulsant activity. In step 3, discriminant analysis and regression analysis statistical calculations were used to correlate the molecular properties of the 48 analogues against maximal electroshock (MES) and subcutaneous metrazol (s.c.Met)-induced seizures. In step 4, the contribution of molecular electrostatic properties to barbiturate anticonvulsant activity was further refined by quantum mechanical derived molecular electrostatic potential (MEP) maps. Using this four-step strategy, we defined the pharmacophore, the portion of a molecule responsible for bioactivity, for anti-MES and anti-s.c.Met activity. For anti-s.c.Met activity, barbiturate lipophilicity and geometry are important considerations; for anti-MES activity, barbiturate topologic and electronic properties have increased relevance.
我们报告了首个关于巴比妥类药物的大规模系统性定量构效关系(QSAR)研究,该研究将分子结构与抗惊厥活性相关联。为了开展这项QSAR研究,我们设计了一个四步策略。在第一步中,确定了一种用于确定巴比妥类药物几何形状和构象的最佳量子力学技术;这就是AM1半经验分子轨道方法。在第二步中,使用AM1方法优化了48种具有不同抗惊厥活性的巴比妥类药物的结构和分子性质。在第三步中,使用判别分析和回归分析统计计算,将48种类似物的分子性质与最大电休克(MES)和皮下戊四氮(s.c.Met)诱导的癫痫发作相关联。在第四步中,通过量子力学推导的分子静电势(MEP)图进一步细化了分子静电性质对巴比妥类药物抗惊厥活性的贡献。使用这个四步策略,我们定义了抗MES和抗s.c.Met活性的药效团,即分子中负责生物活性的部分。对于抗s.c.Met活性,巴比妥类药物的亲脂性和几何形状是重要的考虑因素;对于抗MES活性,巴比妥类药物的拓扑和电子性质具有更高的相关性。