Suppr超能文献

Characterisation of two intronic nuclear-matrix-attachment regions in the human DNA topoisomerase I gene.

作者信息

Romig H, Ruff J, Fackelmayer F O, Patil M S, Richter A

机构信息

Department of Biology, University of Konstanz, Germany.

出版信息

Eur J Biochem. 1994 Apr 1;221(1):411-9. doi: 10.1111/j.1432-1033.1994.tb18753.x.

Abstract

We identify two high-affinity matrix-attachment regions (MAR elements) located in two introns of the human DNA topoisomerase I gene (TOP1). These intronic MAR elements, designated MI and MII, are specifically bound by the nuclear matrix and partition with scaffolds in vitro. One of these MAR elements, MII, is part of a genomic region which is hypersensitive for endogenous nucleases. We have sequenced both DNA elements and have characterized their mode of binding to the nuclear matrix. Experiments with the minor-groove-binding ligands distamycin and chromomycin indicate that the A+T-rich regions, most likely homopolymeric A tracts, are responsible for binding of these DNA elements to the nuclear matrix. MII contains an alu-like element and a segment of curved DNA. Analysis of subfragments of MII show that the curved DNA region itself shows only weak nuclear-matrix binding, and that the high-affinity binding sites are located on subfragments on the 5' side of the curved DNA. In addition, we found that the alu-like sequence does not contribute significantly to the binding of MII and of subfragments of MII to nuclear-matrix proteins. Comparing the distribution of repetitive sequences in the cloned parts of human DNA topoisomerase I gene with the location of high-affinity matrix-binding sites we find no evidence that repetitive DNA may be located close to MAR elements as has been previously suggested.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验