Suppr超能文献

灵活环,连接酶中的新型催化机制。无环谷胱甘肽合成酶的原子结构与功能。

Flexible loop that is novel catalytic machinery in a ligase. Atomic structure and function of the loopless glutathione synthetase.

作者信息

Kato H, Tanaka T, Yamaguchi H, Hara T, Nishioka T, Katsube Y, Oda J

机构信息

Institute for Chemical Research, Kyoto University, Japan.

出版信息

Biochemistry. 1994 May 3;33(17):4995-9. doi: 10.1021/bi00183a001.

Abstract

The catalytic mechanism of glutathione synthetase is proposed to proceed via phosphorylation of the dipeptide substrate to yield an acyl phosphate intermediate; this intermediate is subsequently attacked by glycine, followed by loss of inorganic phosphate, leading to glutathione formation. A flexible loop (Ile226-Gly242) in Escherichia coli B glutathione synthetase is proposed to stabilize the acyl phosphate intermediate by preventing its decomposition by hydrolysis with water [Tanaka, T., Kato, H., Nishioka, T., & Oda, J. (1992) Biochemistry 31, 2259-2265; Tanaka, T., Yamaguchi, H., Kato, H., Nishioka, T., Katsube, Y., & Oda, J. (1993) Biochemistry 32, 12398-12404]. To investigate the function of the loop in the E. coli enzyme definitely, a loopless mutant in which the loop (Ile226-Arg241) was replaced with three residues of glycine was constructed. The crystal structure of the loopless mutant enzyme was essentially identical with that of the wild-type enzyme. Kinetic measurements showed that the replacement of the loop led to increases in the Km values, especially for the glycine, and a 930-fold decrease in the k0 value. Hence, the loopless mutant was 3 x 10(4) less active in terms of its specificity constant (k0/Km) for glycine than the wild-type enzyme. Moreover, the loopless mutant showed gamma-L-glutamyl-L-cysteine-dependent ATP hydrolase activity to almost the same extent as its glutathione synthetase activity. These studies support the fact that the loop enhances the recognition of glycine as well as stabilizes the acyl phosphate intermediate so that the intermediate rapidly reacts with glycine.

摘要

谷胱甘肽合成酶的催化机制被认为是通过二肽底物的磷酸化产生酰基磷酸中间体来进行的;该中间体随后被甘氨酸攻击,接着无机磷酸离去,从而导致谷胱甘肽的形成。有人提出大肠杆菌B谷胱甘肽合成酶中的一个柔性环(Ile226 - Gly242)通过防止酰基磷酸中间体被水水解分解来使其稳定[田中,T.,加藤,H.,西冈,T.,& 小田,J.(1992年)《生物化学》31卷,2259 - 2265页;田中,T.,山口,H.,加藤,H.,西冈,T.,胜部,Y.,& 小田,J.(1993年)《生物化学》32卷,12398 - 12404页]。为了明确研究该环在大肠杆菌酶中的功能,构建了一个无环突变体,其中环(Ile226 - Arg241)被三个甘氨酸残基取代。无环突变体酶的晶体结构与野生型酶基本相同。动力学测量表明,环的替换导致Km值增加,尤其是对于甘氨酸,并且k0值下降了930倍。因此,就其对甘氨酸的特异性常数(k0/Km)而言,无环突变体的活性比野生型酶低3×10⁴倍。此外,无环突变体表现出几乎与谷胱甘肽合成酶活性相同程度的γ - L - 谷氨酰 - L - 半胱氨酸依赖性ATP水解酶活性。这些研究支持了这样一个事实,即该环增强了对甘氨酸的识别并稳定了酰基磷酸中间体,从而使中间体能够迅速与甘氨酸反应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验