Suppr超能文献

Micellar bolaform and omega-carboxylate phosphatidylcholines as substrates for phospholipases.

作者信息

Lewis K A, Soltys C E, Yu K, Roberts M F

机构信息

Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02167.

出版信息

Biochemistry. 1994 May 3;33(17):5000-10. doi: 10.1021/bi00183a002.

Abstract

A series of mixed-chain diacyl-PCs which contain an omega-COOH on the sn-2 chain [1-Cx-2-Cy-(COOH)-PC] and bolaform (1-Cx-2,2'-Cy-1'-Cx-PC) phosphatidylcholines were synthesized and examined as substrates for phospholipase A2 (Naja naja naja) and C (Bacillus cereus). There is very little detectable phospholipase A2 activity toward pure micellar 1-acyl-2-acyl-(omega-COOH) species. In addition, when these same omega-COOH species are present at concentrations above their CMCs, they are potent inhibitors of phospholipase A2 hydrolysis of other micellar lipids. In contrast, phospholipase C hydrolysis of the same 1-acyl-2-acyl-omega-COOH)-PC species proceeds with rates comparable to that of diheptanoyl-PC. The bolaform lipids, which are tethered through a common sn-2 acyl chain, (e.g., 1-C8-2,2'-C12-1'-C8-PC) display quite different kinetic results. Under limiting Ca2+ conditions (100 microM) all the available sn-2 acyl bonds of the dimer are hydrolyzed. However, at high Ca2+ concentrations (1-10 mM) the reaction curves have a biphasic nature, characterized by an initial burst of activity followed by much slower rate. This is consistent with only the micellar 1-acyl-2-acyl-(omega-COOH)-PC produced in situ from phospholipase A2 hydrolysis of the dimer acting as an inhibitor of subsequent phospholipase A2 activity. Phospholipase C hydrolysis of the PC dimer and the sn-2 omega-COOH PC is rapid, with both available glycerophosphate groups cleaved at presumably the same rate. These results are discussed in terms of the unique physical properties (as measured by NMR and fluorescence experiments) of these phospholipids.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验