Suppr超能文献

Glycosylation of shaker potassium channel protein in insect cell culture and in Xenopus oocytes.

作者信息

Santacruz-Toloza L, Huang Y, John S A, Papazian D M

机构信息

Department of Physiology, School of Medicine, University of California, Los Angeles 90024-1751.

出版信息

Biochemistry. 1994 May 10;33(18):5607-13. doi: 10.1021/bi00184a033.

Abstract

We have studied the glycosylation of Shaker K+ channel protein made in two expression systems: an insect cell culture line and amphibian oocytes. In both systems, two potential sites for N-linked glycosylation were modified. The modified sites were located between the first and second putative transmembrane segments, S1 and S2. Although the same sites appeared to be glycosylated in both systems, the fraction of protein glycosylated and the size, structure, or composition of the oligosaccharide chains added were quite different. The results indicate that the S1-S2 loop is extracellular, consistent with a cytoplasmic location for the N-terminus and a transmembrane disposition for hydrophobic segment S1. We have also shown that glycosylation occurs in two stages in oocytes, generating an immature and a mature form of Shaker protein. However, glycosylation is not required either for the assembly of functional channels or for their transport to the cell surface.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验