Yamada S, Sakamoto K, Tsuda H, Yoshida K, Sugahara K, Khoo K H, Morris H R, Dell A
Department of Biochemistry, Kobe Women's College of Pharmacy, Japan.
Glycobiology. 1994 Feb;4(1):69-78. doi: 10.1093/glycob/4.1.69.
We prepared a series of oligosaccharides from porcine intestinal heparin after extensive digestion with a mixture of Flavobacterium heparinase as well as heparitinases I and II. Previously, we reported the structures of the two glycoserines derived from the carbohydrate-protein linkage region [Sugahara et al., J. Biol. Chem., 267, 1528-1533 (1992)] and three tetrasaccharides derived from the antithrombin III-binding site [Yamada et al., J. Biol. Chem., 268, 4780-4787 (1993)]. In this study, we determined the structures of 10 other tetrasaccharides and a trisaccharide by enzymatic digestion, fast atom bombardment mass spectrometry and 500-MHz 1H NMR spectroscopy. These tetrasaccharides share the common disulphated structure, delta HexA alpha 1-4GlcN(N-sulphate)alpha 1-4IdoA(2-sulphate)alpha 1-4GlcN (where HexA is hexuronic acid and IdoA is L-iduronic acid), and their structural variations are based upon the positions of additional sulphate groups. Eight among the 10 have never been isolated as discrete structures. The structure of the trisaccharide is GlcN(N-sulphate)alpha 1-4IdoA(2-sulphate) alpha 1-4GlcN(N,6-disulphate) and is derived from the non-reducing terminus of heparin chains. This structure may represent the terminus of a biosynthetically formed native heparin chain or a newly formed non-reducing terminus exposed by a tissue endo-beta-glucuronidase which may be involved in the intracellular post-synthetic fragmentation of macromolecular heparin. The 11 structures characterized in the present study and 6 additional tetrasaccharides were used to investigate the substrate specificities of heparinase, as well as heparitinases I and II. The results indicate that modification of the adjacent glucosamine on the reducing side of the disaccharide cleavage site influences the enzymatic action of the lyases, whereas the adjacent uronic acid on the non-reducing side is not recognized by these enzymes.
我们用肝素黄杆菌、艾杜糖醛酸酶I和II的混合物对猪肠道肝素进行充分消化后,制备了一系列寡糖。此前,我们报道了源自碳水化合物 - 蛋白质连接区域的两种糖丝氨酸的结构[菅原等人,《生物化学杂志》,267, 1528 - 1533 (1992)]以及源自抗凝血酶III结合位点的三种四糖的结构[山田等人,《生物化学杂志》,268, 4780 - 4787 (1993)]。在本研究中,我们通过酶消化、快原子轰击质谱法和500兆赫的1H核磁共振光谱法确定了另外10种四糖和一种三糖的结构。这些四糖具有共同的双硫酸化结构,即ΔHexAα1 - 4GlcN(N - 硫酸盐)α1 - 4IdoA(2 - 硫酸盐)α1 - 4GlcN(其中HexA是己糖醛酸,IdoA是L - 艾杜糖醛酸),它们的结构差异基于额外硫酸基团的位置。10种中的8种从未作为离散结构被分离出来。三糖的结构是GlcN(N - 硫酸盐)α1 - 4IdoA(2 - 硫酸盐)α1 - 4GlcN(N,6 - 二硫酸盐),它源自肝素链的非还原末端。这种结构可能代表生物合成形成的天然肝素链的末端,或者是由组织内切β - 葡糖醛酸酶暴露的新形成的非还原末端,该酶可能参与大分子肝素的细胞内合成后片段化。本研究中表征的11种结构和另外6种四糖被用于研究肝素酶以及艾杜糖醛酸酶I和II的底物特异性。结果表明,二糖切割位点还原侧相邻葡糖胺的修饰会影响裂合酶的酶促作用,而非还原侧相邻的糖醛酸则不被这些酶识别。