Piegorsch W W
Statistics and Biomathematics Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709.
Environ Health Perspect. 1994 Jan;102 Suppl 1(Suppl 1):77-82. doi: 10.1289/ehp.94102s177.
Models are presented for use in assessing genetic susceptibility to cancer (or other diseases) with animal or human data. Observations are assumed to be in the form of proportions, hence a binomial sampling distribution is considered. Generalized linear models are employed to model the response as a function of the genetic component; these include logistic and complementary log forms. Susceptibility is measured via odds ratios of response, relative to a background genetic group. Significance tests and confidence intervals for these odds ratios are based on maximum likelihood estimates of the regression parameters. Additional consideration is given to the problem of gene-environment interactions and to testing whether certain genetic identifiers/categories may be collapsed into a smaller set of categories. The collapsibility hypothesis provides an example of a mechanistic context wherein nonhierarchical models for the linear predictor can sometimes make sense.
本文提出了一些模型,用于利用动物或人类数据评估癌症(或其他疾病)的遗传易感性。假设观测值为比例形式,因此考虑二项抽样分布。采用广义线性模型将反应建模为遗传成分的函数;这些模型包括逻辑形式和互补对数形式。易感性通过反应的优势比相对于背景遗传组来衡量。这些优势比的显著性检验和置信区间基于回归参数的最大似然估计。还额外考虑了基因-环境相互作用问题以及测试某些遗传标识符/类别是否可以合并为一组更小的类别。可合并性假设提供了一个机制背景的示例,其中线性预测器的非层次模型有时是有意义的。