Suppr超能文献

一个氨基末端四肽决定β-微管蛋白而非α-微管蛋白mRNA的共翻译降解。

An amino-terminal tetrapeptide specifies cotranslational degradation of beta-tubulin but not alpha-tubulin mRNAs.

作者信息

Bachurski C J, Theodorakis N G, Coulson R M, Cleveland D W

机构信息

Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.

出版信息

Mol Cell Biol. 1994 Jun;14(6):4076-86. doi: 10.1128/mcb.14.6.4076-4086.1994.

Abstract

The steady-state level of alpha- and beta-tubulin synthesis is autoregulated by a posttranscriptional mechanism that selectively alters alpha- and beta-tubulin mRNA levels in response to changes in the unassembled tubulin subunit concentration. For beta-tubulin mRNAs, previous efforts have shown that this is the result of a selective mRNA degradation mechanism which involves cotranslational recognition of the nascent amino-terminal beta-tubulin tetrapeptide as it emerges from the ribosome. Site-directed mutagenesis is now used to determine that the minimal sequence requirement for conferring the full range of beta-tubulin autoregulation is the amino-terminal tetrapeptide MR(E/D)I. Although tubulin-dependent changes in alpha-tubulin mRNA levels are shown to result from changes in cytoplasmic mRNA stability, transfection of wild-type and mutated alpha-tubulin genes reveals that alpha- and beta-tubulin mRNA degradation is not mediated through a common pathway. Not only does the amino-terminal alpha-tubulin tetrapeptide MREC fail to confer regulated mRNA degradation, neither wild-type alpha-tubulin transgenes nor an alpha-tubulin gene mutated to encode an amino-terminal MREI yields mRNAs that are autoregulated. Further, although slowing ribosome transit accelerates the autoregulated degradation of endogenous alpha- and beta-tubulin mRNAs, degradation of alpha-tubulin transgene mRNAs is not enhanced, and in one case, the mRNA is actually stabilized. We conclude that, despite similarities, alpha- and beta-tubulin mRNA destabilization pathways utilize divergent determinants to link RNA instability to tubulin subunit concentrations.

摘要

α-微管蛋白和β-微管蛋白合成的稳态水平通过一种转录后机制进行自动调节,该机制会根据未组装的微管蛋白亚基浓度的变化选择性地改变α-微管蛋白和β-微管蛋白的mRNA水平。对于β-微管蛋白mRNA,先前的研究表明,这是一种选择性mRNA降解机制的结果,该机制涉及对新生的氨基末端β-微管蛋白四肽从核糖体出现时的共翻译识别。现在使用定点诱变来确定赋予β-微管蛋白全面自动调节所需的最小序列是氨基末端四肽MR(E/D)I。虽然α-微管蛋白mRNA水平的微管蛋白依赖性变化显示是由细胞质mRNA稳定性的变化引起的,但野生型和突变型α-微管蛋白基因的转染表明,α-微管蛋白和β-微管蛋白mRNA的降解不是通过共同途径介导的。不仅氨基末端α-微管蛋白四肽MREC不能赋予调节的mRNA降解,野生型α-微管蛋白转基因和突变为编码氨基末端MREI的α-微管蛋白基因都不会产生自动调节的mRNA。此外,虽然核糖体转运减慢会加速内源性α-微管蛋白和β-微管蛋白mRNA的自动调节降解,但α-微管蛋白转基因mRNA的降解不会增强,在一种情况下,mRNA实际上会稳定下来。我们得出结论,尽管存在相似之处,但α-微管蛋白和β-微管蛋白mRNA的不稳定途径利用不同的决定因素将RNA不稳定性与微管蛋白亚基浓度联系起来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2828/358773/5fad9533037e/molcellb00006-0560-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验