Suppr超能文献

Ca(2+)-dependent non-NMDA receptor-mediated synaptic currents in ischemic CA1 hippocampal neurons.

作者信息

Tsubokawa H, Oguro K, Masuzawa T, Kawai N

机构信息

Department of Physiology, Jichi Medical School, Tochigi-ken, Japan.

出版信息

J Neurophysiol. 1994 Mar;71(3):1190-6. doi: 10.1152/jn.1994.71.3.1190.

Abstract
  1. The changes in excitatory postsynaptic currents (EPSCs) after transient cerebral ischemia were studied using whole-cell recording from CA1 pyramidal neurons in gerbils. In 64% (18 of 28) neurons recorded 1.5-3 days after ischemia, EPSCs showed a markedly slowed time course that was never seen in normal control neurons. 2. The slow EPSCs were not affected by an N-methyl-D-aspartate (NMDA) receptor antagonist [DL-2-aminophosphonovalerate (APV); 100 microM] but were abolished by a non-NMDA receptor antagonist [6-cyano-7-nitroquinoxaline-2,3-dione (CNQX); 10 microM], indicating that the slow EPSCs were mostly composed of non-NMDA current. 3. The slow non-NMDA EPSCs had rise times ranging from 1.2 to 7.3 ms and decay time constants between 11.5 and 56.3 ms. In normal neurons the rise time of the non-NMDA component of EPSCs ranged from 1.6 to 7.5 ms and the decay time constants ranged from 4.9 to 27.3 ms. 4. The reversal potential of the slow EPSCs in ischemic neurons was not changed by replacing 50% of the NaCl in the external solution with sodium isethionate. Bath application of 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS; 100 microM) had no effect on the slow EPSCs. Therefore Cl- current is not responsible for the slow EPSCs. 5. When external Ca2+ concentration was reduced to half of control, the decay time constant of the slow EPSCs decreased to 50 +/- 25%, mean +/- SD. In addition, bath application of a cell-permeable Ca2+ chelator, 1,2-bis(o-aminophenoxy)ethane-N,N,-N',N'-tetraacetyl,tetr aacetoxymethyl ester(BAPTA-AM), reduced the decay time constant.(ABSTRACT TRUNCATED AT 250 WORDS)
摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验