Brand R M, Ghazzi M N, Rolfes-Curl A, Cantor H C, Midgley A R
Reproductive Sciences Program, University of Michigan, Ann Arbor 48109-0404.
Am J Physiol. 1994 May;266(5 Pt 1):E739-49. doi: 10.1152/ajpendo.1994.266.5.E739.
Time-dependent concentration profiles of input signals and feedback of metabolic products can strongly influence cellular responsiveness. To study these parameters, we developed a perifusion system that can deliver biological signals to cells with minimal dispersion, monitor real time responses, and remove waste products continuously. By monitoring pH with miniature hydrogen ion-selective electrodes at intervals of 1 s, effects of dispersion, flow rate, pumping system, and changes in cellular metabolism were demonstrated. Dynamic responses of a human cell line to a series of 10-min pulses of the metabolic uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) were monitored. A rapid 1-min increase in acid release occurred on exposure to CCCP, followed by a decrease in acidification and then a gradual return to a baseline slightly more acidic than before administration of CCCP. These observations demonstrate that this perifusion system can reveal small changes in pH (+/- 0.0005 units) induced by metabolic perturbations and has the potential to reveal the dynamics of cellular responsiveness to a wide range of hormonal, metabolic, and other chemical signals.