Suppr超能文献

Cloning, sequencing, and expression of Rhodococcus L-phenylalanine dehydrogenase. Sequence comparisons to amino-acid dehydrogenases.

作者信息

Brunhuber N M, Banerjee A, Jacobs W R, Blanchard J S

机构信息

Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461.

出版信息

J Biol Chem. 1994 Jun 10;269(23):16203-11.

PMID:8206922
Abstract

L-Phenylalanine dehydrogenase catalyzes the NAD(+)-dependent, reversible, oxidative deamination of L-phenylalanine to form ammonia, phenyl pyruvate, and NADH. The enzyme has been purified to homogeneity from Rhodococcus sp. M4, and a partial amino acid sequence was obtained. A cosmid library of Rhodococcus sp. M4 genomic DNA was prepared and used to isolate a 2.5-kilobase PstI fragment that contained the pdh gene. The open reading frame of 1068 nucleotides encodes a polypeptide of 356 amino acids, portions of which match the amino acid sequence determined for the purified enzyme. Expression of the Rhodococcus pdh gene in Escherichia coli, which does not contain a phenylalanine dehydrogenase activity, yields a soluble enzyme exhibiting phenylalanine dehydrogenase activity. Both the enzyme purified from Rhodococcus and the enzyme expressed in E. coli are post-translationally modified by removal of the amino-terminal methionine. The overall amino acid sequence is homologous to previously reported sequences of leucine and phenylalanine dehydrogenases as well as several glutamate dehydrogenases. The amino-terminal portion of the enzyme contains residues involved in L-amino acid binding and catalysis, while the carboxyl-terminal portion contains the presumptive dinucleotide-binding domain. A detailed sequence comparison of Rhodococcus phenylalanine dehydrogenase with leucine, phenylalanine, and glutamate dehydrogenases suggests residues involved in general amino acid binding and others that provide for amino acid discrimination.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验