Sloviter R S
Neurology Research Center, Helen Hayes Hospital, New York State Department of Health, West Haverstraw 10993.
Ann Neurol. 1994 Jun;35(6):640-54. doi: 10.1002/ana.410350604.
Temporal lobe seizures are frequently associated with a characteristic pattern of hippocampal pathology (hippocampal sclerosis), as well as pathology in other temporal lobe structures. Despite more than a century of study, the relationship between pathology and epileptogenesis remains unclear. Endfolium sclerosis, which is characterized by the loss of dentate hilar neurons that are presumed to govern dentate granule cell excitability, is evident whenever hippocampal sclerosis exists and is the only temporal lobe pathology in some patients. Because prolonged seizures or head trauma produce endfolium sclerosis and granule cell hyperexcitability in experimental animals, hilar neuron loss may be the common pathological denominator and primary network defect underlying development of a hippocampal seizure "focus." Physiological studies suggest that vulnerable hilar mossy cells normally excite neurons that mediate granule cell inhibition. Recent anatomical studies indicate that the axons of mossy cells project longitudinally, out of the lamellar plane in which their cell bodies lie. If mossy cells in one lamella excite inhibitory neurons in surrounding lamellae, neocortical excitation of one segment of the granule cell layer may produce lateral inhibition and limit neocortical excitation to the targeted lamella. In patients who have had status epilepticus, prolonged febrile seizures, head trauma, or encephalitis, loss of dentate mossy cells may deafferent inhibitory neurons, render them "dormant," and thereby disinhibit an enlarged expanse of the granule cell layer. The selective loss of neurons that normally govern lateral inhibition in the dentate gyrus may cause functional delamination of the granule cell layer and result in synchronous, multilamellar discharges in response to cortical stimuli. Repetitive seizures may ultimately produce the full pattern of hippocampal and mesial temporal sclerosis by destroying cells within the seizure circuit that were not injured irreversibly by the initial insult. Thus, hippocampal pathology may be both the cause and effect of seizures that originate in the temporal lobe.
颞叶癫痫常与海马体病理特征性模式(海马硬化)以及其他颞叶结构的病理改变相关。尽管经过了一个多世纪的研究,病理与癫痫发生之间的关系仍不清楚。终叶硬化以齿状门区神经元缺失为特征,这些神经元被认为控制着齿状颗粒细胞的兴奋性,只要存在海马硬化就很明显,并且在一些患者中是唯一的颞叶病理改变。由于长时间癫痫发作或头部创伤在实验动物中会导致终叶硬化和颗粒细胞兴奋性过高,门区神经元缺失可能是海马癫痫“病灶”发展的共同病理特征和主要网络缺陷。生理学研究表明,易损的门区苔藓细胞通常会兴奋介导颗粒细胞抑制的神经元。最近的解剖学研究表明,苔藓细胞的轴突纵向投射,超出其细胞体所在的板层平面。如果一个板层中的苔藓细胞兴奋周围板层中的抑制性神经元,颗粒细胞层某一段的新皮质兴奋可能会产生侧向抑制,并将新皮质兴奋限制在目标板层。在患有癫痫持续状态、长时间热性惊厥、头部创伤或脑炎的患者中,齿状苔藓细胞的缺失可能会使抑制性神经元失去传入神经,使其“休眠”,从而解除对颗粒细胞层扩大区域的抑制。正常情况下控制齿状回侧向抑制的神经元选择性缺失可能会导致颗粒细胞层功能分层,并导致对皮质刺激产生同步、多层放电。反复癫痫发作最终可能通过破坏癫痫发作环路中未被初始损伤不可逆损伤的细胞,产生完整的海马和内侧颞叶硬化模式。因此,海马病理可能既是颞叶起源癫痫的原因,也是其结果。