Sogorb M A, Díaz-Alejo N, Vilanova E, Vicedo J L, Carrera V
Department of Neurochemistry, University of Alicante, Spain.
Arch Toxicol. 1993;67(6):416-21. doi: 10.1007/BF01977403.
One of the main detoxification mechanisms of organophosphorus (OP) compounds is hydrolysis by OP hydrolysing enzymes (OP-hydrolases) or phosphoric triester hydrolases. We previously reported an OP-hydrolase from hen plasma which hydrolyses O-hexyl O-2,5-dichlorophenyl phosphoramidate (HDCP). In this study, a total of 18 cations, as well as several thiol blocking reagents, ethylenediaminetetraacetic acid (EDTA) and mipafox (N,N'-diisopropyl phosphorodiamidofluoridate) were assayed as activators or inhibitors of the HDCP hydrolysing activity of hen plasma in vitro. Of the 18 inorganic cations only 1 M Na+ caused any inhibition. Most of the cations, including Ca2+, exerted no detectable effect; however, 1 mM Cu2+ was found to produce an activation of up to 263%, with a lesser activation of up to 168% for 1 mM Zn2+. The thiol blocking reagents methyl vinyl ketone (MVK) and N-ethylmaleimide (NEM) inhibited the enzyme in a time-dependent manner, the maximum effect depending upon concentration in the case of NEM, but not in the case of MVK; however, 5,5'-dithiobis (2-nitrobenzoic acid) caused inhibition that was concentration dependent but which was independent of time. Other thiol blocking reagents such as p-hydroxymercuribenzoic acid (sodium salt), phenylmercuric acetate, iodoacetic acid (sodium salt) and iodoacetamide produced only slight inhibition, as did EDTA. Finally, the OP compound mipafox exerted no detectable effect.